4,089 research outputs found
A Quadratic Programming Approach to Quasi-Static Whole-Body Manipulation
This paper introduces a local motion planning method for robotic systems with manipulating limbs, moving bases (legged or wheeled), and stance stability constraints arising from the presence of gravity. We formulate the problem of selecting local motions as a linearly constrained quadratic program (QP), that can be solved efficiently. The solution to this QP is a tuple of locally optimal joint velocities. By using these velocities to step towards a goal, both a path and an inverse-kinematic solution to the goal are obtained. This formulation can be used directly for real-time control, or as a local motion planner to connect waypoints. This method is particularly useful for high-degree-of-freedom mobile robotic systems, as the QP solution scales well with the number of joints. We also show how a number of practically important geometric constraints (collision avoidance, mechanism self-collision avoidance, gaze direction, etc.) can be readily incorporated into either the constraint or objective parts of the formulation. Additionally, motion of the base, a particular joint, or a particular link can be encouraged/discouraged as desired. We summarize the important kinematic variables of the formulation, including the stance Jacobian, the reach Jacobian, and a center of mass Jacobian. The method is easily extended to provide sparse solutions, where the fewest number of joints are moved, by iteration using Tibshirani’s method to accommodate an l_1 regularizer. The approach is validated and demonstrated on SURROGATE, a mobile robot with a TALON base, a 7 DOF serial-revolute torso, and two 7 DOF modular arms developed at JPL/Caltech
Cooling a nanomechanical resonator with quantum back-action
Quantum mechanics demands that the act of measurement must affect the
measured object. When a linear amplifier is used to continuously monitor the
position of an object, the Heisenberg uncertainty relationship requires that
the object be driven by force impulses, called back-action. Here we measure the
back-action of a superconducting single-electron transistor (SSET) on a
radiofrequency nanomechanical resonator. The conductance of the SSET, which is
capacitively coupled to the resonator, provides a sensitive probe of the
latter's position;back-action effects manifest themselves as an effective
thermal bath, the properties of which depend sensitively on SSET bias
conditions. Surprisingly, when the SSET is biased near a transport resonance,
we observe cooling of the nanomechanical mode from 550mK to 300mK-- an effect
that is analogous to laser cooling in atomic physics. Our measurements have
implications for nanomechanical readout of quantum information devices and the
limits of ultrasensitive force microscopy (such as single-nuclear-spin magnetic
resonance force microscopy). Furthermore, we anticipate the use of these
backaction effects to prepare ultracold and quantum states of mechanical
structures, which would not be accessible with existing technology.Comment: 28 pages, 7 figures; accepted for publication in Natur
Goldstone Fermion Dark Matter
We propose that the fermionic superpartner of a weak-scale Goldstone boson
can be a natural WIMP candidate. The p-wave annihilation of this `Goldstone
fermion' into pairs of Goldstone bosons automatically generates the correct
relic abundance, whereas the XENON100 direct detection bounds are evaded due to
suppressed couplings to the Standard Model. Further, it is able to avoid
indirect detection constraints because the relevant s-wave annihilations are
small. The interactions of the Goldstone supermultiplet can induce non-standard
Higgs decays and novel collider phenomenology.Comment: 25 pages, 6 figures. References added, minor typos corrected.
Submitted to JHE
Resonant Cooper-Pair Tunneling: Counting Statistics and Frequency-Dependent Current Noise
We discuss the counting statistics and current noise associated with the
double Josephson quasiparticle resonance point in a superconducting single
electron transistor. The counting statistics are in general phase-dependent,
despite the fact that the average current has no dependence on phase. Focusing
on parameter regimes where the counting statistics have no phase-dependence, we
use a general relation first derived by MacDonald in 1948 to obtain the full
frequency-dependent shot noise directly from the counting statistics, without
any further approximations. We comment on problems posed by the
phase-dependence of the counting statistics for the finite-frequency noise.Comment: 13 pages, 2 figures; to appear in the proceedings of the NATO ASI
"New Directions in Mesoscopic Physics", Erice, 200
Signals of additional Z boson in e+e-\to W+W^- at the ILC with polarized beams
We consider the possibility of fingerprinting the presence of heavy
additional Z' bosons that arise naturally in extensions of the standard model
such as E_6 models and left-right symmetric models, through their mixing with
the standard model Z boson. By considering a class of observables including
total cross sections, energy distributions and angular distributions of decay
leptons we find significant deviation from the standard model predictions for
these quantities with right-handed electrons and left-handed positrons at
\sqrt{s}=800 GeV. The deviations being less pronounced at smaller centre of
mass energies as the models are already tightly constrained. Our work suggests
that the ILC should have a strong beam polarization physics program
particularly with these configurations. On the other hand, a forward backward
asymmetry and lepton fraction in the backward direction are more sensitive to
new physics with realistic polarization due to interesting interplay with the
neutrino t- channel diagram. This process complements the study of fermion pair
production processes that have been considered for discrimination between these
models.Comment: 23 pages, 9 figures, uses plain latex; substantially improved
discussion, references added, version accepted for publication in JHE
Holographic Hadrons in a Confining Finite Density Medium
We study a sector of the hadron spectrum in the presence of finite baryon
density. We use a non-supersymmetric gravity dual to a confining guage theory
which exhibits a running dilaton. The interaction of mesons with the finite
density medium is encoded in the dual theory by a force balancing between
flavor D7-branes and a baryon vertex provided by a wrapped D5-brane. When the
current quark mass m_q is sufficiently large, the meson mass reduces,
exhibiting an interesting spectral flow as we increase the baryon density while
it has a more complicated behaviour for very small m_q.Comment: 34 pages, 20 figures, errors for some figures are fixe
What Role Do Annelid Neoblasts Play? A Comparison of the Regeneration Patterns in a Neoblast-Bearing and a Neoblast-Lacking Enchytraeid Oligochaete
The term ‘neoblast’ was originally coined for a particular type of cell that had been observed during annelid regeneration, but is now used to describe the pluripotent/totipotent stem cells that are indispensable for planarian regeneration. Despite having the same name, however, planarian and annelid neoblasts are morphologically and functionally distinct, and many annelid species that lack neoblasts can nonetheless substantially regenerate. To further elucidate the functions of the annelid neoblasts, a comparison was made between the regeneration patterns of two enchytraeid oligochaetes, Enchytraeus japonensis and Enchytraeus buchholzi, which possess and lack neoblasts, respectively. In E. japonensis, which can reproduce asexually by fragmentation and subsequent regeneration, neoblasts are present in all segments except for the eight anterior-most segments including the seven head-specific segments, and all body fragments containing neoblasts can regenerate a complete head and a complete tail, irrespective of the region of the body from which they were originally derived. In E. japonensis, therefore, no antero-posterior gradient of regeneration ability exists in the trunk region. However, when amputation was carried out within the head region, where neoblasts are absent, the number of regenerated segments was found to be dependent on the level of amputation along the body axis. In E. buchholzi, which reproduces only sexually and lacks neoblasts in all segments, complete heads were never regenerated and incomplete (hypomeric) heads could be regenerated only from the anterior region of the body. Such an antero-posterior gradient of regeneration ability was observed for both the anterior and posterior regeneration in the whole body of E. buchholzi. These results indicate that the presence of neoblasts correlates with the absence of an antero-posterior gradient of regeneration ability along the body axis, and suggest that the annelid neoblasts are more essential for efficient asexual reproduction than for the regeneration of missing body parts
Dimension-Six Terms in the Standard Model Lagrangian
When the Standard Model is considered as an effective low-energy theory,
higher dimensional interaction terms appear in the Lagrangian. Dimension-six
terms have been enumerated in the classical article by Buchmueller and Wyler
[3]. Although redundance of some of those operators has been already noted in
the literature, no updated complete list has been published to date. Here we
perform their classification once again from the outset. Assuming baryon number
conservation, we find 15 + 19 + 25 = 59 independent operators (barring flavour
structure and Hermitian conjugations), as compared to 16 + 35 + 29 = 80 in
Ref.[3]. The three summed numbers refer to operators containing 0, 2 and 4
fermion fields. If the assumption of baryon number conservation is relaxed, 4
new operators arise in the four-fermion sector.Comment: 16 pages, no figures, v3: Redundant B-violating operator remove
On open-closed extension of boundary string field theory
We investigate a classical open-closed string field theory whose open string
sector is given by boundary string field theory. The open-closed interaction is
introduced by the overlap of a boundary state with a closed string field. With
the help of the Batalin-Vilkovisky formalism, the closed string sector is
determined to be the HIKKO closed string field theory. We also discuss the
gauge invariance of this theory in both open and closed string sides.Comment: 25 pages, 2 figures, comments and a reference added, typos correcte
- …