467 research outputs found

    Types of Duplicity found in Chicks and Ducklings

    Get PDF

    静電吸着を活用した大画面上でのマルチユーザ力覚提示システム

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 山本 晃生, 東京大学教授 佐々木 健, 東京大学教授 新野 俊樹, 東京大学准教授 小林 英津子, 埼玉大学教授 高崎 正也University of Tokyo(東京大学

    A Pilot Study: The Beneficial Effects of Combined Statin-exercise Therapy on Cognitive Function in Patients with Coronary Artery Disease and Mild Cognitive Decline.

    Get PDF
    Objective Hypercholesterolemia, a risk factor in cognitive impairment, can be treated with statins. However, cognitive decline associated with "statins" (HMG-CoA reductase inhibitors) is a clinical concern. This pilot study investigated the effects of combining statins and regular exercise on cognitive function in coronary artery disease (CAD) patients with prior mild cognitive decline. Methods We recruited 43 consecutive CAD patients with mild cognitive decline. These patients were treated with a statin and weekly in-hospital aerobic exercise for 5 months. We measured serum lipids, exercise capacity, and cognitive function using the mini mental state examination (MMSE). Results Low-density lipoprotein cholesterol levels were significantly decreased, and maximum exercise capacity (workload) was significantly increased in patients with CAD and mild cognitive decline after treatment compared with before. Combined statin-exercise therapy significantly increased the median (range) MMSE score from 24 (22-25) to 25 (23-27) across the cohort (p<0.01). Changes in body mass index (BMI) were significantly and negatively correlated with changes in the MMSE. After treatment, MMSE scores in the subgroup of patients that showed a decrease in BMI were significantly improved, but not in the BMI-increased subgroup. Furthermore, the patients already on a statin at the beginning of the trial displayed a more significant improvement in MMSE score than statin-naïve patients, implying that exercise might be the beneficial aspect of this intervention as regards cognition. In a multivariate logistic regression analysis adjusted for age >65 years, sex, and presence of diabetes mellitus, a decrease in BMI during statin-exercise therapy was significantly correlated with an increase in the MMSE score (odds ratio: 4.57, 95% confidence interval: 1.05-20.0; p<0.05). Conclusion Statin-exercise therapy may help improve cognitive dysfunction in patients with CAD and pre-existing mild cognitive decline

    Unraveling the magnetic structure of YbNiSn single crystal via crystal growth and neutron diffraction

    Full text link
    Neutron and x-ray diffraction experiments were performed on the ternary intermetallic compound YbNiSn, formerly categorized as a ferromagnetic Kondo compound. At zero field, an increase in scattering intensity was observed on top of allowed and forbidden nuclear reflections below Tc, breaking the reflection condition of the crystal symmetry Pnma. This indicates that the magnetic structure of YbNiSn is antiferromagnetic-type, rather than the previously proposed simple collinear ferromagnetic structure. Temperature dependence of the scattering intensity of the 011 reflection confirmed the magnetic ordering at 5.77(2) K. No incommensurate satellite reflection was observed at 2.5 K. By applying external magnetic field of 1 T along the a axis, the magnetic intensity at the nuclear-forbidden 001 position was suppressed, while a slight enhancement at the nuclear-allowed 002 position was observed. This suggests a spin-flip transition under the external magnetic field along the a axis in YbNiSn. The proposed magnetic structures at zero field and 1 T correspond to the magnetic space groups of Pn'm'a and Pnm'a', respectively. The piezomagnetic effect and the switch between the two magnetic space groups by the external stress, which could be detected by the anomalous Hall effect, are proposed

    Src Homology 2–containing 5-Inositol Phosphatase (SHIP) Suppresses an Early Stage of Lymphoid Cell Development through Elevated Interleukin-6 Production by Myeloid Cells in Bone Marrow

    Get PDF
    The Src homology (SH)2–containing inositol 5-phosphatase (SHIP) negatively regulates a variety of immune responses through inhibitory immune receptors. In SHIP(−/−) animals, we found that the number of early lymphoid progenitors in the bone marrow was significantly reduced and accompanied by expansion of myeloid cells. We exploited an in vitro system using hematopoietic progenitors that reproduced the in vivo phenotype of SHIP(−/−) mice. Lineage-negative marrow (Lin(−)) cells isolated from wild-type mice failed to differentiate into B cells when cocultured with those of SHIP(−/−) mice. Furthermore, culture supernatants of SHIP(−/−) Lin(−) cells suppressed the B lineage expansion of wild-type lineage-negative cells, suggesting the presence of a suppressive cytokine. SHIP(−/−) Lin(−) cells contained more IL-6 transcripts than wild-type Lin(−) cells, and neutralizing anti–IL-6 antibody rescued the B lineage expansion suppressed by the supernatants of SHIP(−/−) Lin(−) cells. Finally, we found that addition of recombinant IL-6 to cultures of wild-type Lin(−) bone marrow cells reproduced the phenotype of SHIP(−/−) bone marrow cultures: suppression of B cell development and expansion of myeloid cells. The results identify IL-6 as an important regulatory cytokine that can suppress B lineage differentiation and drive excessive myeloid development in bone marrow

    High-resolution mapping of in vivo genomic transcription factor binding sites using in situ DNase I footprinting and ChIP-seq

    Get PDF
    Accurate identification of the DNA-binding sites of transcription factors and other DNA-binding proteins on the genome is crucial to understanding their molecular interactions with DNA. Here, we describe a new method: Genome Footprinting by high-throughput sequencing (GeF-seq), which combines in vivo DNase I digestion of genomic DNA with ChIP coupled with high-throughput sequencing. We have determined the in vivo binding sites of a Bacillus subtilis global regulator, AbrB, using GeF-seq. This method shows that exact DNA-binding sequences, which were protected from in vivo DNase I digestion, were resolved at a comparable resolution to that achieved by in vitro DNase I footprinting, and this was simply attained without the necessity of prediction by peak-calling programs. Moreover, DNase I digestion of the bacterial nucleoid resolved the closely positioned AbrB-binding sites, which had previously appeared as one peak in ChAP-chip and ChAP-seq experiments. The high-resolution determination of AbrB-binding sites using GeF-seq enabled us to identify bipartite TGGNA motifs in 96% of the AbrB-binding sites. Interestingly, in a thousand binding sites with very low-binding intensities, single TGGNA motifs were also identified. Thus, GeF-seq is a powerful method to elucidate the molecular mechanism of target protein binding to its cognate DNA sequences
    corecore