409 research outputs found

    A Novel Approach of Dynamic Cross Correlation Analysis on Molecular Dynamics Simulations and Its Application to Ets1 Dimer–DNA Complex

    Full text link
    The dynamic cross correlation (DCC) analysis is a popular method for analyzing the trajectories of molecular dynamics (MD) simulations. However, it is difficult to detect correlative motions that appear transiently in only a part of the trajectory, such as atomic contacts between the side-chains of amino acids, which may rapidly flip. In order to capture these multi-modal behaviors of atoms, which often play essential roles, particularly at the interfaces of macromolecules, we have developed the "multi-modal DCC (mDCC)" analysis. The mDCC is an extension of the DCC and it takes advantage of a Bayesian-based pattern recognition technique. We performed MD simulations for molecular systems modeled from the (Ets1)2-DNA complex and analyzed their results with the mDCC method. Ets1 is an essential transcription factor for a variety of physiological processes, such as immunity and cancer development. Although many structural and biochemical studies have so far been performed, its DNA binding properties are still not well characterized. In particular, it is not straightforward to understand the molecular mechanisms how the cooperative binding of two Ets1 molecules facilitates their recognition of Stromelysin-1 gene regulatory elements. A correlation network was constructed among the essential atomic contacts, and the two major pathways by which the two Ets1 molecules communicate were identified. One is a pathway via direct protein-protein interactions and the other is that via the bound DNA intervening two recognition helices. These two pathways intersected at the particular cytosine bases (C110/C11), interacting with the H1, H2, and H3 helices. Furthermore, the mDCC analysis showed that both pathways included the transient interactions at their intermolecular interfaces of Tyr396-C11 and Ala327-Asn380 in multi-modal motions of the amino acid side chains and the nucleotide backbone. Thus, the current mDCC approach is a powerful tool to reveal these complicated behaviors and scrutinize intermolecular communications in a molecular system

    Reducing variability among treatment machines using knowledge‐based planning for head and neck, pancreatic, and rectal cancer

    Get PDF
    PURPOSE: This study aimed to assess dosimetric indices of RapidPlan model-based plans for different energies (6, 8, 10, and 15 MV; 6- and 10-MV flattening filter-free), multileaf collimator (MLC) types (Millennium 120, High Definition 120, dual-layer MLC), and disease sites (head and neck, pancreatic, and rectal cancer) and compare these parameters with those of clinical plans. METHODS: RapidPlan models in the Eclipse version 15.6 were used with the data of 28, 42, and 20 patients with head and neck, pancreatic, and rectal cancer, respectively. RapidPlan models of head and neck, pancreatic, and rectal cancer were created for TrueBeam STx (High Definition 120) with 6 MV, TrueBeam STx with 10-MV flattening filter-free, and Clinac iX (Millennium 120) with 15 MV, respectively. The models were used to create volumetric-modulated arc therapy plans for a 10-patient test dataset using all energy and MLC types at all disease sites. The Holm test was used to compare multiple dosimetric indices in different treatment machines and energy types. RESULTS: The dosimetric indices for planning target volume and organs at risk in RapidPlan model-based plans were comparable to those in the clinical plan. Furthermore, no dose difference was observed among the RapidPlan models. The variability among RapidPlan models was consistent regardless of the treatment machines, MLC types, and energy. CONCLUSIONS: Dosimetric indices of RapidPlan model-based plans appear to be comparable to the ones based on clinical plans regardless of energies, MLC types, and disease sites. The results suggest that the RapidPlan model can generate treatment plans independent of the type of treatment machine

    大腸癌肝転移におけるCD200発現の臨床的意義

    Get PDF
    Background: Approximately 30% of patients diagnosed with colorectal cancer (CRC) develop liver metastases. We evaluated the role of CD200, a potent immunosuppressive molecule, in colorectal liver metastases (CRLM). Methods: We examined 110 patients who underwent curative liver resection for CRLM at our institution between 2000 and 2016. Based on the results of immunohistochemical analysis, the patients were divided into high-CD200 (n = 47) and low-CD200 (n = 63) expression groups. The relationships between CD200 expression and various clinicopathological outcomes were investigated. Results: The overall survival (OS) of patients in the high-CD200 group was significantly worse than that in the low-CD200 group (p = 0.009). Multivariate analysis showed that the independent prognostic factors in CRLM were maximum tumor size > 30 mm (p = 0.002), preoperative carcinoembryonic antigen level > 20 ng/mL (p < 0.001), primary CRC N2-3 (p = 0.049), and high-CD200 expression (p = 0.004). Furthermore, CD4+, CD8+, and CD45RO+ tumor-infiltrating lymphocytes in CRLM were significantly higher in the low-CD200 group than in the high-CD200 group (p = 0.005, p = 0.001, and p < 0.001, respectively). In addition, patients who had received preoperative chemotherapy had higher CD200 expression than those who had not received preoperative chemotherapy, and OS was significantly worse in patients in the high-CD200 group who had received preoperative chemotherapy. Conclusions: CD200 expression was an independent prognostic factor in CRLM. CD200 may play a critical role in tumor immunity in CRLM, and can therefore be used as a potential therapeutic target in CRLM.博士(医学)・乙第1497号・令和3年3月15日© 2021. Society of Surgical Oncology.© Springer Nature Singapore Pte Ltd. 2020This is a post-peer-review, pre-copyedit version of an article published in Annals of Surgical Oncology. The final authenticated version is available online at: https://doi.org/10.1245/s10434-020-09471-w

    Histomorphometric analysis of minimodeling in the vertebrae in postmenopausal patients treated with anti-osteoporotic agents

    Get PDF
    AbstractMinimodeling is a type of focal bone formation that is characterized by the lack of precedent bone erosion by osteoclasts. Although this form of bone formation has been described for more than a decade, how anti-osteoporotic agents that are currently used in clinical practice affect the kinetics of minimodeling is not fully understood. We performed a bone morphometric analysis using human vertebral specimens collected from postmenopausal patients who underwent spinal surgery. Patients were divided into three groups according to osteoporosis medication; non-treated, Eldecalcitol (ELD, a vitamin D derivative that has recently been approved to treat patients with osteoporosis in Japan)-treated, and bisphosphonate-treated groups. Five to six patients were enrolled in each group. There was a trend toward enhanced minimodeling in ELD-treated patients and suppressed of it in bisphosphonate-treated patients compared with untreated patients. The differences of minimodeling activity between ELD-treated and bisphosphonate-treated patients were statistically significant. The present study suggests that ELD and bisphosphonates have opposite effects on minimodeling from one another, and show that minimodeling also takes place in vertebrae as has been described for the ilium and femoral head in humans

    Inkjet printed intelligent reflecting surface (IRS) for indoor applications

    Full text link
    A passive, low-cost, paper-based intelligent reflecting surface (IRS) is designed to reflect a signal in a desired direction to overcome non-line-of-sight scenarios in indoor environments. The IRS is fabricated using conductive silver ink printed on a paper with a specific nanoparticle arrangement, yielding a cost effective paper-based IRS that can easily be mass-produced. Full-wave numerical simulation results were consistent with measurements results, demonstrating the IRS's ability to reflect incident wave into a desired nonspecular direction based on the inkjet-printed design and materials

    Myelopathy due to Spinal Extramedullary Hematopoiesis in a Patient with Polycythemia Vera

    Get PDF
    Extramedullary hematopoiesis (EMH) occasionally occurs in patients exhibiting hematological disorders with decreased hematopoietic efficacy. EMH is rarely observed in the spinal epidural space and patients are usually asymptomatic. In particular, in the patients with polycythemia vera, spinal cord compression due to EMH is extremely rare. We report a case of polycythemia vera, in which operative therapy proved to be an effective treatment for myelopathy caused by spinal EMH

    Anxiolytic-like effects of hochuekkito in lipopolysaccharide-treated mice involve interleukin-6 inhibition

    Get PDF
    Hochuekkito (HET) is a Kampo medicine used to treat postoperative and post-illness general malaise and decreased motivation. HET is known to regulate immunity and modulate inflammation. However, the precise mechanism and effects of HET on inflammation-induced central nervous system disorders remain unclear. This study aimed to assess the effect of HET on inflammation-induced anxiety-like behavior and the mechanism underlying anxiety-like behavior induced by lipopolysaccharide (LPS). Institute of Cancer Research mice were treated with LPS (300 mu g/kg, intraperitoneally), a bacterial endotoxin, to induce systemic inflammation. The mice were administered HET (1.0 g/kg, orally) once a day for 2 weeks before LPS treatment. The light-dark box test and the hole-board test were performed 24 h after the LPS injection to evaluate the effects of HET on anxiety-like behaviors. Serum samples were obtained at 2, 5, and 24 h after LPS injection, and interleukin-6 (IL-6) levels in serum were measured. Human and mouse macrophage cells (THP-1 and RAW264.7 cells, respectively) were used to investigate the effect of HET on LPS-induced IL-6 secretion. The repeated administration of HET prevented anxiety-like behavior and decreased serum IL-6 levels in LPS-treated mice. HET significantly suppressed LPS-induced IL-6 secretion in RAW264.7 and THP-1 cells. Similarly, glycyrrhizin, one of the chemical constituents of HET, suppressed LPS-induced anxiety-like behaviors. Our study revealed that HET ameliorated LPS-induced anxiety-like behavior and inhibited IL-6 release in vivo and in vitro. Therefore, we postulate that HET may be useful against inflammation-induced anxiety-like behavior
    corecore