30 research outputs found

    Genistein increases epidermal growth factor receptor signaling and promotes tumor progression in advanced human prostate cancer.

    Get PDF
    Genistein is an isoflavone found in soy, and its chemo-preventive and -therapeutic effects have been well established from in vitro studies. Recently, however, its therapeutic actions in vivo have been questioned due to contradictory reports from animal studies, which rely on rodent models or implantation of cell lines into animals. To clarify in vivo effects of genistein in advanced prostate cancer patients, we developed a patient-derived prostate cancer xenograft model, in which a clinical prostatectomy sample was grafted into immune deficient mice. Our results showed an increased lymph node (LN) and secondary organ metastases in genistein-treated mice compared to untreated controls. Interestingly, invasive malignant cells aggregated to form islands/micrometastasis only in the secondary organs of the genistein-treated groups, not in the untreated control group. To understand the underlying mechanism for metastatic progression, we examined cell proliferation and apoptosis on paraffin-sections. Immunohistological data show that tumors of genistein-treated groups have more proliferating and fewer apoptotic cancer cells than those of the untreated group. Our immunoblotting data suggest that increased proliferation and metastasis are linked to enhanced activities of tyrosine kinases, EGFR and its downstream Src, in genistein-treated groups. Despite the chemopreventive effects proposed by earlier in vitro studies, the cancer promoting effect of genistein observed here suggests the need for careful selection of patients and safer planning of clinical trials

    <ORIGINAL>Quantification of Porphyromonas gingivalis by real time PCR : new primers targeting the rgpA and rgpB gene encoding RGP

    Get PDF
    We designed new primers for the quantification of Porphyromonas gingivalis by real time PCR. The new primer set targeted the rgpA and rgpB genes that encode arginine specific cysteine proteinase (Arggingipain or Rgp), one of the putative pathogenic factors of P. gingivalis. The PCR product obtained using our primers showed no by-products by melting curve analysis. The PCR product sequence showed no significant matches to other sequences by BLAST searching of genetic databases except for matches to P. gingivalis rgpA and rgpB sequence, and could not be amplified from template derived from other oral bacteria apart from P. gingivalis. Therefore, we concluded that our primers were specific for P. gingivalis rgpA and rgpB, and could be used to quantity from 10^3 to 10^7 P. gingivalis cells when applied to real time PCR

    Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy

    Get PDF
    ObjectivesWe sought to explore the relationship between a Tcap gene (TCAP)abnormality and cardiomyopathy.BackgroundHypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) cause severe heart failure and sudden death. Recent genetic investigations have revealed that mutations of genes encoding Z-disc components, including titin and muscle LIM protein (MLP), are the primary cause of both HCM and DCM. The Z-disc plays a role in establishing the mechanical coupling of sarcomeric contraction and stretching, with the titin/Tcap/MLP complex serving as a mechanical stretch sensor. Tcap interacts with the calsarcin, which tethers the calcineurin to the Z-disc.MethodsThe TCAPwas analyzed in 346 patients with HCM (236 familial and 110 sporadic cases) and 136 patients with DCM (34 familial and 102 sporadic cases). Two different in vitro qualitative assays—yeast two-hybrid and glutathion S-transferase pull-down competition—were performed in order to investigate functional changes in Tcap's interaction with MLP, titin, and calsarcin-1 caused by the identified mutations and a reported DCM-associated mutation, R87Q.ResultsTwo TCAPmutations, T137I and R153H, were found in patients with HCM, and another TCAPmutation, E132Q, was identified in a patient with DCM. It was demonstrated by the qualitative assays that the HCM-associated mutations augment the ability of Tcap to interact with titin and calsarcin-1, whereas the DCM-associated mutations impair the interaction of Tcap with MLP, titin, and calsarcin-1.ConclusionsThese observations suggest that the difference in clinical phenotype (HCM or DCM) may be correlated with the property of altered binding among the Z-disc components

    A Novel Protein Isoform of the Multicopy Human NAIP Gene Derives from Intragenic Alu SINE Promoters

    Get PDF
    The human neuronal apoptosis inhibitory protein (NAIP) gene is no longer principally considered a member of the Inhibitor of Apoptosis Protein (IAP) family, as its domain structure and functions in innate immunity also warrant inclusion in the Nod-Like Receptor (NLR) superfamily. NAIP is located in a region of copy number variation, with one full length and four partly deleted copies in the reference human genome. We demonstrate that several of the NAIP paralogues are expressed, and that novel transcripts arise from both internal and upstream transcription start sites. Remarkably, two internal start sites initiate within Alu short interspersed element (SINE) retrotransposons, and a third novel transcription start site exists within the final intron of the GUSBP1 gene, upstream of only two NAIP copies. One Alu functions alone as a promoter in transient assays, while the other likely combines with upstream L1 sequences to form a composite promoter. The novel transcripts encode shortened open reading frames and we show that corresponding proteins are translated in a number of cell lines and primary tissues, in some cases above the level of full length NAIP. Interestingly, some NAIP isoforms lack their caspase-sequestering motifs, suggesting that they have novel functions. Moreover, given that human and mouse NAIP have previously been shown to employ endogenous retroviral long terminal repeats as promoters, exaptation of Alu repeats as additional promoters provides a fascinating illustration of regulatory innovations adopted by a single gene

    Tumor-promoting effects of genistein and estrogen receptor beta in prostate cancer

    No full text
    Genistein is an isoflavone found in soy, and its chemotherapeutic effects have been well established from in vitro studies. Recently, however, its therapeutic actions in vivo have been questioned due to contradictory reports from animal studies, which rely on rodent models or implantation of cell lines into animals. Using patient-derived prostate cancer xenograft models, in which clinical prostatectomy samples were grafted into immune deficient mice, this study showed that genistein promoted metastatic progression in vivo. To test if the metatstasis-promoting effects of genistein may be mediated via ERβ activation, we treated the xenografted mice with genistein, an anti-estrogen compound (i.e. ICI 182 780) or a combination of both. The results showed that anti-estrogen treatment significantly decreased metastatic spread compared to genistein, which promoted lung metastasis in a dose-dependent manner. Gene expression analyses showed that genistein and anti-estrogen treatments targeted the same signaling pathway but different molecules, producing opposite effects on tumour biology. Genistein stimulated expression of upstream molecules that reside in the Focal Adhesion Kinase (FAK) pathway, while anti-estrogen down-regulated downstream molecules within the same pathway. Further analysis of the microarray data revealed a unique set of genes that were up-regulated by genistein and also were down-regulated by ICI 182,780. Five out of the six genes identified from this comparison belonged to the metallothionein (MT) gene family. Using qRT-PCR, the changes in expression levels were validated in metastatic and non-metastatic tumour lines of LTL313b, both of which had been derived from the same PCa patient, indicating a strong association between MT gene expression and prostate cancer metastasis. In summary, genistein-activated-ERβ promotes metastasis in two ways; genomic and non-genomic pathways. In the non-genomic pathway, ERβ stimulates kinase signaling pathways, leading to cell survival and increased motility. In the genomic pathway, ERβ increases MT and/or other metastasis-associated gene expression, which can be inhibited by anti-estrogen treatment. This study has demonstrated that genistein elicits cancer promoting effects in vivo and that ERβ is important in metastatic progression of human PCa. The significant inhibition of metastasis by anti-estrogen treatment shown here potentiates a promising new selective estrogen receptor modulator treatment for metastatic patients.Medicine, Faculty ofGraduat

    Genistein increases epidermal growth factor receptor signaling and promotes tumor progression in advanced human prostate cancer.

    Get PDF
    Genistein is an isoflavone found in soy, and its chemo-preventive and -therapeutic effects have been well established from in vitro studies. Recently, however, its therapeutic actions in vivo have been questioned due to contradictory reports from animal studies, which rely on rodent models or implantation of cell lines into animals. To clarify in vivo effects of genistein in advanced prostate cancer patients, we developed a patient-derived prostate cancer xenograft model, in which a clinical prostatectomy sample was grafted into immune deficient mice. Our results showed an increased lymph node (LN) and secondary organ metastases in genistein-treated mice compared to untreated controls. Interestingly, invasive malignant cells aggregated to form islands/micrometastasis only in the secondary organs of the genistein-treated groups, not in the untreated control group. To understand the underlying mechanism for metastatic progression, we examined cell proliferation and apoptosis on paraffin-sections. Immunohistological data show that tumors of genistein-treated groups have more proliferating and fewer apoptotic cancer cells than those of the untreated group. Our immunoblotting data suggest that increased proliferation and metastasis are linked to enhanced activities of tyrosine kinases, EGFR and its downstream Src, in genistein-treated groups. Despite the chemopreventive effects proposed by earlier in vitro studies, the cancer promoting effect of genistein observed here suggests the need for careful selection of patients and safer planning of clinical trials

    Wound-induced expression of DEFECTIVE IN ANTHER DEHISCENCE1 and DAD1-like lipase genes is mediated by both CORONATINE INSENSITIVE1-dependent and independent pathways in Arabidopsis thaliana

    No full text
    Wounding is a serious event in plants that may result from insect feeding and increase the risk of pathogen infection. Wounded plants produce high amounts of jasmonic acid (JA), which triggers the expression of insect and pathogen resistance genes. We focused on the transcriptional regulation of DEFECTIVE IN ANTHER DEHISCENCE1 and six of its homologs including DONGLE (DGL) in Arabidopsis, which encode lipases involved in JA biosynthesis. Plants constitutively expressing DAD1 accumulated a higher amount of JA than control plants after wounding, indicating that the expression of these lipase genes contributes to determining JA levels. We found that the expression of DAD1, DGL, and other DAD1-LIKE LIPASE (DALL) genes is induced upon wounding. Some DALLs were also expressed in unwounded leaves. Further experiments using JA-biosynthetic and JA-response mutants revealed that the wound induction of these genes is regulated by several distinct pathways. DAD1 and most of its homologs other than DALL4 were fully induced without relying on endogenous JA-Ile production and were only partly affected by JA deficiency, indicating that positive feedback by JA is not necessary for induction of these genes. However, DAD1 and DGL required CORONATINE INSENSITIVE1 (COI1) for their expression, suggesting that a molecule other than JA might act as a regulator of COI1. Wound induction of DALL1, DALL2, and DALL3 did not require COI1. This differential regulation of DAD1 and its homologs might explain their functions at different time points after wounding.Epub 2014 Jan 16
    corecore