28 research outputs found

    A function for binaural integration in auditory grouping and segregation in the inferior colliculus

    Get PDF
    Responses of neurons to binaural, harmonic complex stimuli in urethane-anesthetized guinea pig inferior colliculus (IC) are reported. To assess the binaural integration of harmonicity cues for sound segregation and grouping, responses were measured to harmonic complexes with different fundamental frequencies presented to each ear. Simultaneously gated harmonic stimuli with fundamental frequencies of 125 Hz and 145 Hz were presented to the left and right ears, respectively, and recordings made from 96 neurons with characteristic frequencies >2 kHz in the central nucleus of the IC. Of these units, 70 responded continuously throughout the stimulus and were excited by the stimulus at the contralateral ear. The stimulus at the ipsilateral ear excited (EE: 14%; 10/70), inhibited (EI: 33%; 23/70), or had no significant effect (EO: 53%; 37/70), defined by the effect on firing rate. The neurons phase locked to the temporal envelope at each ear to varying degrees depending on signal level. Many of the cells (predominantly EO) were dominated by the response to the contralateral stimulus. Another group (predominantly EI) synchronized to the contralateral stimulus and were suppressed by the ipsilateral stimulus in a phasic manner. A third group synchronized to the stimuli at both ears (predominantly EE). Finally, a group only responded when the waveform peaks from each ear coincided. We conclude that these groups of neurons represent different “streams” of information but exhibit modifications of the response rather than encoding a feature of the stimulus, like pitch

    Responses in the Inferior Colliculus of the Guinea Pig to Concurrent Harmonic Series and the Effect of Inactivation of Descending Controls

    No full text
    One of the fundamental questions of auditory research is how sounds are segregated because, in natural environments, multiple sounds tend to occur at the same time. Concurrent sounds, such as two talkers, physically add together and arrive at the ear as a single input sound wave. The auditory system easily segregates this input into a coherent percept of each of the multiple sources. A common feature of speech and communication calls is their harmonic structure and in this report we used two harmonic complexes to study the role of the corticofugal pathway in the processing of concurrent sounds. We demonstrate that, in the inferior colliculus (IC) of the anesthetized guinea pig, deactivation of the auditory cortex altered the temporal and/or the spike response to the concurrent, monaural harmonic complexes. More specifically, deactivating the auditory cortex altered the representation of the relative level of the complexes. This suggests that the auditory cortex modulates the representation of the level of two harmonic complexes in the IC. Since sound level is a cue used in the segregation of auditory input, the corticofugal pathway may play a role in this segregation
    corecore