573 research outputs found

    Asymmetric Shocks and Regional Risk Sharing: Evidence from Japan

    Get PDF
    We use the methodology of Kalemli-Ozcan, Sorensen, and Yosha ( 2003) to calculate the degree of insurance among the Japanese prefectures. Prefectural-level data for fiscal years 1975 to 1999 are used to analyze the impact of idiosyncratic shocks to regional income. The results indicate that about 20 percent of idiosyncratic shocks to regional income are absorbed by inter-regional income insurance through the capital market, about 10 percent is absorbed by the national government through the inter-regional tax transfer system, and about 60 percent is absorbed as a result of changes in saving and dissaving.

    Distortions in Factor Markets and Structural Adjustments in the Economy

    Get PDF
    In this paper, we carry out qualitative and quantitative analyses of impacts of factor market distortions on Japan's economic stagnation in the 1990s, thereby showing that resolution of structural impediments is essential for the restoration of sustained economic growth. Distortions in factor markets lead the economy to exhibit inefficient resource allocations, resulting in an inward shift of the nations production possibility frontier and a decline in its attainable output. Our estimation results reveal that the deterioration of distortions in factor markets is attributable to 0.5 percent of the decline in GDP growth (-3.6 percent) after the bursting of the asset price bubble. This confirms that the exacerbation of structural impediments in factor markets is one of the major causes of the prolonged economic stagnation after the bursting of the asset price bubble. Moreover, given that autonomous resolution of factor market distortions through the market mechanism is hardly expected, it is important to take measures to achieve a more efficient allocation of productive resources. Without such measures, monetary and fiscal policies cannot return the economy to a sustainable growth path.

    Finite-time regulation property of DNA feedback regulator

    Get PDF
    In dynamic DNA nanotechnology, the DNA strand displacement technique provides the cornerstone for the bottom-up design of a man-made DNA molecular system. Practically, a feedback controller for regulating the concentration of a target DNA strand to the desired level is indispensable for mediating the kinetic momentum of a molecular actuator. However, such a regulator system operates by consuming fuel strands and requires sufficient supplies of these consumables for its normal execution, indicating that, in practice, optimal controller design requires the period of time during which the regulator proceeds with normal operation to be as long as possible. The fact that the system is naturally high dimensional and nonlinear complicates the analysis of properties emerging during a finite-time period in terms of their theoretical aspects. In this paper, we first define the new concept of a “finite-time regulation property” of DNA systems in the regulation problem. Then, to theoretically analyze this regulation property, we present two-time-scale modeling based on the difference in the initial distribution of the abundance of DNA strands. Focusing on the fast mode as a subsystem with a positive quadratic structure, we propose a new method for analyzing the regulation property observed in a finite period of time

    On the Fertilization of the Triploid Ginbuna

    Get PDF
    The ferilization process of the gynogenetic triploid ginbuna Carassius auratus langsdorfii were observed histologically. In the triploid female, it has been reported that the sperm nucleus remains in condensed condition throughout the ferilization to first cleavage. This sperm nucleus does not fuse with female pronucleus, producing the all female triploid offsprings gynogenetically. On the other hand, in the present experiment, in some triploid eggs, the penetrated sperm nucleus swells to form male pronucleus. Some of these eggs develop into tetraploid other than triploid fish. On the scale transplantation experiments between these offsprings, in which all of the sperm nuclei had swollen at the time of fertilization, the unidirectional rejection were observed in two combinations. One of these donors was tetraploid and other was triploid. It seems probable that the former unidirectional rejection might be caused by the introduction of paternal genome, and the later might be caused by the recombination of genes at meiosis or the mutation of the donor and/or the host. From these observation, it was ascertained that the offsprings of triploid ginbuna were not always belonging to the same clone but that some of them differenciated their genome during the gametogenesis or early developmental stage.Article信州大学理学部紀要 19(1): 53-61(1984)departmental bulletin pape

    Analysis of finite-time regulation property of biomolecular PI controller

    Get PDF
    In practical applications of dynamic DNA nanotechnology, a biomolecular controller is required for maintaining the operation of the molecular actuator at a desired condition based on the information from molecular sensors. By making use of the DNA strand displacement mechanism as a “programming language” in the controller design, a biomolecular PI controller has been proposed. However, this PI control system has been verified only at the simulation level, and a theoretical regulation analysis is still required. Accordingly, in this study, we perform a rigorous regulation analysis of the biomolecular PI control system. Specifically, we theoretically prove that the output signal approaches the target level at a quasi-steady state. To this end, we apply the concept of finite-time regulation property to the biomolecular PI control system

    XOR Gate Design Toward a Practical Complete Set for DNA Computing

    Get PDF
    Practical design of the XOR gate is an important milestone in the field of DNA computing. In this study, we aim to develop an enzyme-free XOR gate driven by a toehold-mediated strand displacement mechanism possessing the true detection property. The advantages of our design are as follows: dual-rail logic is not required, the explicit use of the NOT gate is avoided, the circuit structure is simple, and the design is achievable with fewer DNA strands than that designed by the combination of four NAND gates. A rational circuit design is performed and the dynamic behaviors of the biochemical reaction and the secondary structures of DNA strands are confirmed by computer simulation. In particular, both the domain-level design technique with G-T mismatched base pairs and base sequence-level fine-tuning are successfully achieved to alleviate the performance degradation arising from unintended and leaky reactions present in the circuit. The validity of the XOR gate design is confirmed by experimental studies

    Development of an experimental optoelectronic device to study the amplitude of mandibular movements

    Get PDF
    This study aimed to present a wireless mandibular motion tracking device and optoelectronic data acquisition system developed to analyze the real-time spatial motion of the entire mandible during mouth opening and closing with no restriction of any movement. The procedures were divided into three phases: confection of a kinematic arch, dynamic digital video image acquisition, and image processing and analysis by using graphic computation. Four sequences of jaw opening/closing movements were recorded in lateral view: two from the maximum intercuspation (MIC) and the other two from a forced mandibular retruded position. Jaw motion was recorded by a digital video camera and processed as spatial coordinates corresponding to the position variation of the markers in the kinematic arch. The results showed that the method was capable of recording and processing the dynamics of the mandibular movements during jaw opening/closing using pixel-magnitude points. The mandible showed points with less displacement located near the temporomandibular joint during the opening/closing movements from the mandibular retruded position. When the jaw movements were recorded from MIC, these points were located near the mandibular foramen

    Renewable DNA Proportional-Integral Controller with Photoresponsive Molecules

    Get PDF
    A molecular robot is an intelligent molecular system. A typical control problem of molecular robots is to maintain the concentration of a specific DNA strand at the desired level, which is typically attained by a molecular feedback control mechanism. A molecular feedback system can be constructed in a bottom-up method by transforming a nonlinear chemical reaction system into a pseudo-linear system. This method enables the implementation of a molecular proportional-integral (PI) controller on a DNA reaction system. However, a DNA reaction system is driven by fuel DNA strand consumption, and without a sufficient amount of fuel strands, the molecular PI controller cannot perform normal operations as a concentration regulator. In this study, we developed a design method for a molecular PI control system to regenerate fuel strands by introducing photoresponsive reaction control. To this end, we employed a photoresponsive molecule, azobenzene, to guide the reaction direction forward or backward using light irradiation. We validated our renewable design of the PI controller by numerical simulations based on the reaction kinetics. We also confirmed the proof-of-principle of our renewable design by conducting experiments using a basic DNA circuit

    Doubly linked chiral phenanthrene oligomers for homogeneously π-extended helicenes with large effective conjugation length

    Get PDF
    Helically twisted conductive nanocarbon materials are applicable to optoelectronic and electromagnetic molecular devices working on the nanometer scale. Herein, we report the synthesis of per-peri-perbenzo[5]- and [9]helicenes in addition to previously reported π-extended [7]helicene. The homogeneously π-extended helicenes can be regarded as helically fused oligo-phenanthrenes. The HOMO−LUMO gap decreased significantly from 2.14 to 1.15 eV with increasing helical length, suggesting the large effective conjugation length (ECL) of the π-extended helical framework. The large ECL of π-extended helicenes is attributed to the large orbital interactions between the phenanthrene subunits at the 9- and 10-positions, which form a polyene-like electronic structure. Based on the experimental results and DFT calculations, the ultrafast decay dynamics on the sub-picosecond timescale were attributed to the low-lying conical intersection

    Characterization of Al-based insulating films fabricated by physical vapor deposition

    Get PDF
    ArticleJAPANESE JOURNAL OF APPLIED PHYSICS. 47(1):609-611(2008)journal articl
    corecore