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Abstract:
In practical applications of dynamic DNA nanotechnology, a biomolecular controller is required for maintaining the operation of

the molecular actuator at a desired condition based on the information from molecular sensors. By making use of the DNA strand dis-
placement mechanism as a “programming language” in the controller design, a biomolecular PI controller has been proposed. However,
this PI control system has been verified only at the simulation level, and a theoretical regulation analysis is still required. Accordingly,
in this study, we perform a rigorous regulation analysis of the biomolecular PI control system. Specifically, we theoretically prove that
the output signal approaches the target level at a quasi-steady state. To this end, we apply the concept of finite-time regulation property
to the biomolecular PI control system.
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1 Introduction

Recent advances in nanotechnology have enabled the re-
alization of practical molecular systems, such as molecular
robots [1]. A molecular robot is comprised of a molecu-
lar sensor that can receive stimuli from the environment,
and a molecular actuator that can act on the environment.
As in mechatronics robots, a feedback control system that
links information from a molecular sensor to a molecular
actuator is required in molecular robots to achieve practical
tasks [2]. It should be noted that information transmission
between a molecular sensor/actuator and a feedback circuit
must be performed with signaling molecules. Therefore,
the concentration of the signaling molecule is the physical
quantity that represents the “signal” flowing in the con-
trol system [3]. As a result, a control mechanism needs to
be designed by molecular computing, and a control circuit
needs to be implemented as a biomolecular reaction sys-
tem.

In practical applications of molecular robots, a
biomolecular controller is required for maintaining the op-

eration of the molecular actuator at a desired condition
based on the information from the molecular sensor. This
is a so-called regulator, which tries to adjust the concen-
tration of the specific signaling molecule sent to the actu-
ator to a reference level [3]. In recent years, DNA com-
puting has been widely used as a methodology for design-
ing molecular feedback controllers. Especially, the DNA
strand displacement (DSD) mechanism is useful as a “pro-
gramming language” in DNA computing, and its compu-
tational universality has been proved theoretically [4]. In
previous studies [5], three basic elements have been con-
structed using the DSD mechanism, namely the gain, sum-
mation, and integration elements, and a biomolecular PI
controller has been rationally designed [6]. It has also been
shown that the proportional and integral gains, which are
the controller parameters, can be adjusted by changing
the molecular structures of the DNA molecules. Neverthe-
less, the realization of a derivative element using the DSD
mechanism has been a long-standing problem. However,
a design method for pseudo-derivative elements has been
devised, which enables the development of a PID con-
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troller [7]. In addition, a switching mechanism using the
DSD mechanism has been proposed to realize a molecular
sliding mode controller [8].

On the other hand, a regulator designed using the DSD
mechanism is a high-dimensional nonlinear system, so it
is extremely difficult to analyze the stability of the closed-
loop system theoretically. In particular, it is known that the
regulation operation whereby the output signal follows the
reference level appears at a quasi-steady state, so the stabil-
ity analysis of the equilibrium point of the system has no
meaning [3]. In fact, the biomolecular PI control system
has been verified only at the simulation level, and its the-
oretical regulation analysis is required. This is a common
problem that applies to other systems, including biomolec-
ular PID and sliding mode controllers.

In this study, we perform a rigorous regulation anal-
ysis of the biomolecular PI control system. Specifically,
we theoretically prove that the output signal matches the
target level at the quasi-steady state. To this end, we in-
troduce the concept of finite-time regulation property [9].
First, through numerical simulation, we confirm that the
normal regulation observed in the biomolecular PI con-
trol system can be achieved only during a limited period
of time. Next, we convert the ordinary differential equa-
tion of the biomolecular PI control system into a two-time
scale model in accordance with the transformation pro-
posed in [9] and employ the singular perturbation theory.
Finally, we evaluate the behavior of the solution of the fast
system analytically and show that the system has a finite-
time regulation property. Because the mathematical model
of the PI control system is quite high-dimensional, its anal-
ysis is performed by using computer algebra software. This
paper presents the outline of the analysis procedure, the
results of the PI control system, and the detailed analysis
method using a simple model example.

2 Preliminaries

2.1 System description of biomolecular PI controller

The biomolecular PI controller can be designed by a
combination of three basic reactions, namely degradation,
annihilation, and catalysis, which provide the cornerstone
of the design of biomolecular circuits [5]. Its abstract reac-
tion mechanism is described as follows [6]:
Plant (first-order lag element) :

U+ k1−→ U+ + Y +, Y + k2−→ ϕ, (1)

U− k1−→ U− + Y −, Y − k2−→ ϕ, (2)

Error calculation:

R+ kc−→ R+ + E+, E+ kd−→ ϕ, (3)

R− kc−→ R− + E−, E− kd−→ ϕ, (4)

Y + kc−→ Y + + E−, E− kd−→ ϕ, (5)

Y − kc−→ Y − + E+, E+ kd−→ ϕ, (6)

Proportional element:

E+ kpkc−→ E+ + U+, U+ kd−→ ϕ, (7)

E− kpkc−→ E− + U−, U− kd−→ ϕ, (8)

Integral element:

E+ kc−→ E+ + I+, (9)

E− kc−→ E− + I−, (10)

I+
kikc−→ I+ + U+, U+ kd−→ ϕ, (11)

I−
kikc−→ I− + U−, U− kd−→ ϕ, (12)

Annihilation mechanism:

U+ + U− ka−→ ϕ, (13)

R+ +R− ka−→ ϕ, (14)

Y + + Y − ka−→ ϕ, (15)

E+ + E− ka−→ ϕ, (16)

I+ + I−
ka−→ ϕ, (17)

where U+, U−, Y +, Y −, R+, R−, E+, E−, I+, and I−

denote specific DNA strands. The symbol ϕ represents a
“waste” DNA strand generated through an irreversible re-
action; the symbol ϕ is used for all individual waste DNA
strands for convenience. The right arrow (→) denotes a
biomolecular reaction, and the parameters k1, k2, kc, kd,
kp, ki, and ka shown on the arrows represent the rate con-
stants. The addition symbol (+) in the left- and right-hand
sides denote binding and unbinding reactions, respectively.
It should be noted that a molecular system cannot deal with
real numbers in R explicitly because the state variables are
positive molecular concentrations. To solve this problem,
two types of DNA strands that store positive and negative
state values are defined, and the real number of the signal
is calculated as follows:

u = u+ − u− (18)

r = r+ − r− (19)

y = y+ − y− (20)

e = e+ − e− (21)

i = i+ − i− (22)
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where u, r, y, e, and i are signals on R, and their su-
perscripts x+ and x− denote the concentrations of DNA
strands X+ and X−, respectively, with x ∈ {u, r, y, e, i}
and X ∈ {U,R, Y,E, I}. Based on this formalism, the PI
control system shown in Fig. 1 can be realized in vitro.

Proportional
element

Plant

Integral
element

r
e

y
u
+

+

- +

Fig. 1 PI control system defined by Eqs. (1)–(22).

2.2 Implementation using DSD mechanism

The PI control system defined by Eqs. (1)–(17) can be
implemented by using the DSD mechanism [6]. For ex-
ample, the abstract reaction mechanism of “catalysis” de-
scribed as

X+ −→ X+ + Y + (23)

can be designed at the structural domain level of DNA
strands using the computer software Visual DSD (Mi-
crosoft Corporation), which is specialized in the design
of biomolecular circuits by the DSD mechanism [10], as
shown in Fig. 2. This catalysis reaction is comprised of 29
kinds of DNA strands (depicted by a square frame) and
18 biomolecular reactions (depicted by bidirectional arrow
of which white head indicates the forward reaction). The
DNA strands surrounded by bold square frames have ini-
tial concentrations, and the others represent intermediate
states generating through a series of reactions. The do-
main structure of a DNA strand illustrated in the square
frame is shown by the notation of Visual DSD (See [1]
for details). The mathematical model consists of a 29-
dimensional ordinary differential equation with input x+

and output y+. As a result, the overall PI control system is
a 255-dimensional nonlinear differential equation consist-
ing of 329 biomolecular reactions described as

ξ̇ = ψ(ξ), ξ(0) = ξ0, (24)

where ξ ∈ Dξ ⊂ R255 is a state vector whose elements are
the concentrations of DNA strands, and ψ : Dξ → R255

is a nonlinear function characterized by the mass action
law. The graphical view of the abstract reaction mecha-
nism, schematic views of the detailed DSD reactions, and
parameter values and initial concentrations and their Mat-

lab (Mathworks, Inc.) codes are available in [6] or from the
Visual DSD website [11].
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Fig. 2 Detailed reaction scheme of catalysis (illustrated by Visual
DSD with the compilation mode “detailed”).

Fig. 3 shows a simulation result of the PI control system
(24) with proportional gain kp = 10 and integral gain
ki = 10 executed by Visual DSD. The rate constants are
k1 = 0.2 s−1, k2 = 0.1 s−1, kc = kd = 0.0008 s−1,
and ka = 0.01 nM−1s−1. At first glance, it seems that the
regulation of output y to the reference r was successful.
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Remark 1 It is noted that, as with conventional PI
control, the proportional and integral gains must be ad-
justed appropriately to obtain the desired response.
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Fig. 3 Simulation of PI control system.

2.3 Problem statements

It is important to note that the regulation shown in Fig. 3
is not achieved at the steady state. In fact, as shown in Fig.
4, if the simulation is performed for a longer time, the reg-
ulation collapses, and the output y transitions to the real
steady state. In other words, in the biomolecular PI con-
trol system, regulation is a transient phenomenon emerg-
ing while reaching the steady state, and is different from
the “regulation” obtained as time t tends to ∞, i.e., in the
context of classical control theory. Therefore, it is unclear
whether the PI control system is really a regulator. More
precisely, whether the output y is theoretically guaranteed
to approach reference r, at least during a certain period of
time.

0 1 2

Time (sec)

3 4

×106

5
0

5

10

15

20

C
o

n
ce

n
tr

at
io

n
 (

n
M

)

y

r

Fig. 4 Long-term simulation of PI control system.

3 Results

The regulation of a molecular feedback system, includ-
ing biomolecular PI controllers, needs to be evaluated in
the framework of the finite-time regulation property (see
Definition 1). Because it is impossible to verify the whole
PI control system described by the 255-dimensional differ-
ential equation due to space limitations, the analysis pro-
cedure of the finite-time regulation property is conducted
following the steps below.

Step 1 Classify 255 kinds of DNA strands of the PI
control system (24) into 48 fuel and 207 signal strands in
accordance with Definition 2. ♢

Step 2 Transform the PI control system (24) into a
two-time-scale model. Because the system does not in-
clude (i) fuel-to-fuel binding and (ii) sequential and irre-
versible hybridization among signal strands, all require-
ments of the conversion given by Assumption 1 in [9] are
satisfied. In accordance with the procedure for the trans-
formation to a two-time-scale model (see Theorem 1 in [9]
for details), the PI control system (24) is transformed into
48-dimensional slow and 207-dimensional fast systems as
follows:

ẋ=f(x, z, ε)=Af (z)x+bf (z, ε), x(0)=x0∈Bx, (25)

εż=g(x, z, ε)=Ag(x)z+εbg(z), z(0)=z0∈Bz, (26)

where x = [x1, ..., x48]
T ∈ Dx ⊂ R48 and z =

[z1, ..., z207]
T ∈ Dz ⊂ R207 are the “dimensionless” slow

and fast states, respectively, Bx = {x ∈ Dx|
∑48

i=1 xi =

1} andBz = {z ∈ Dz|
∑207

i=1 zi = 1} are the sets of initial
states, Af : Dz → R48×48 and Ag : Dx → R207×207 are
matrix-valued affine functions, bf : Dz×R → R48 is com-
prised of linear and/or quadratic terms with bf (0, ε) = 0,
bg : Dz → R207 comprises quadratic terms with bg(0) =
0, and ε is a sufficiently small positive constant. ♢

Before describing Step 3, we give an example that
roughly explains why a biomolecular system created by the
DSD mechanism can be converted into a two-time-scale
model through Steps 1 and 2.

Example 1 (Concept of two-time-scale modeling)
Consider a simple binding-unbinding reaction of X1 +

X2 ⇌ X3. The detailed reaction process can be modeled
as follows:

ξ̇1 =−kfξ1ξ2 + krξ3, ξ1(0) = ξ10 , (27)

ξ̇2 =−kfξ1ξ2 + krξ3, ξ2(0) = ξ20 , (28)

ξ̇3 = kfξ1ξ2 − krξ3, ξ3(0) = ξ30 , (29)
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where ξ1, ξ2, and ξ3 are the concentrations of X1, X2,
and X3, respectively. The rate constants kf and kr are the
binding and unbinding rate constants, respectively. We as-
sume that the input signal ξ1 is transmitted into the signal
strand ξ3 whereas ξ2 contributes to providing the fuel for
driving the circuit. Hence, their initial concentrations are
given under the condition satisfying 0 ≤ ξ10 ≪ ξ20 and
0 ≤ ξ30 ≪ ξ20 , indicating that X2 is a fuel strand, and X1

and X3 are signal strands.
Let the total concentrations of signal strands and fuel

strands be Ts = ξ1(0) + ξ3(0) and Tf = ξ2(0), respec-
tively. We normalize ξi (i = 1, 2, 3) as

ξ̄1 =
ξ1
Ts

; ξ̄2 =
ξ2
Tf

; ξ̄3 =
ξ3
Ts
, (30)

and normalize the time variable as tr = kfTst. Then, we
obtain the following two-time-scale model:

dξ̄2
dtr

=−ξ̄1ξ̄2 +
kr
kfTf

ξ̄3, ξ̄2(0) = 1, (31)

ε
dξ̄1
dtr

=−ξ̄1ξ̄2 +
kr
kfTf

ξ̄3, ξ̄1(0) = ξ̄10 , (32)

ε
dξ̄3
dtr

= ξ̄1ξ̄2 −
kr
kfTf

ξ̄3, ξ̄3(0) = ξ̄30 , (33)

where ε = Ts/Tf ≪ 1 is a dimensionless positive param-
eter, and the initial concentrations are given by (ξ̄10 , ξ̄30) ∈
{(ξ̄1, ξ̄3) ∈ R2|ξ̄1+ ξ̄3 = 1}. It is noted that the new states
ξ̄1 and ξ̄3 are always finite even if ε tends to 0 (Ts → 0).
This fact is easily confirmed as follows: from (27) and (29),
for all t ≥ 0, we have

ξ̇1+ξ̇3≡0 → ξ1(t)+ξ3(t)≡Ts → ξ̄1+ξ̄3≡1. (34)

The positivity with ξ̄1 ≥ 0 and ξ̄3 ≥ 0 leads to ξ̄1 ≤ 1 and
ξ̄3 ≤ 1 for all t ≥ 0 independent of ε. Therefore, it is safe
to assume that this two-time-scale model is also a singular
perturbation model.

Fig. 5 shows the simulation result for the original system
(27)–(29) and the transformed system (31)–(33), where
kf = 5 × 10−5 nM−1s−1, kr = 1.2 s−1, ξ10 = 1 nM,
ξ20 = 10000 nM, and ε = 1 × 10−4. It is observed that
the states ξ̄1 and ξ̄3 respond much faster than ξ̄2, indicating
that the system has the two-time-scale property. ♢

Remark 1 This two-time-scale property is somewhat
non-intuitive, which is rather strange considering the orig-
inal description (27)–(29). However, if the state variables
are evaluated in terms of the relative amount of change
from their respective initial concentrations, a small change
(e.g., 0.3 nM) of ξ2 from the large initial concentration

(e.g., 10,000 nM) in Fig. 5 becomes almost negligible in
the dynamics of ξ̄2. As a result, the state variable ξ̄2 can be
regarded as a slow-mode variable. It is noteworthy that the
normalization (30) depends on Tf and Ts, which are deter-
mined by the initial concentrations of the fuel and signal
strands, respectively. ♢
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Fig. 5 Simulated results for Example 1.

Next, we continue the description of the steps of the
analysis.

Step 3 Investigate the trajectories of the z-system on
the invariant manifold by analytically solving g(x, z, 0) =
0. Because, as we can easily check,Ag(x) of (26) has some
zero eigenvalues and no eigenvalue with a positive real part
for all Dx, Lemma 2 in [9] indicated that there exists an
exponentially stable invariant manifold for the boundary
layer system with ε = 0. By using a computer algebra
system, such as Mathematica (Wolfram Research), we can
verify that the relation r = y is satisfied on the manifold,
so Theorem 3 in [9] indicates that the PI control system
(24) has the finite-time regulation property. ♢

The following simple “gain element” example roughly
explains the analysis procedure through Steps 1, 2, and 3.

Example 2 (Outline of analysis procedure) Consider
the following abstract reaction mechanism

X1 +X2 ⇌ X3 ⇌ X4 ⇌ X5 +X6. (35)

The detailed reaction process can be modeled as

ξ̇1 =−kf1ξ1ξ2 + kr1ξ3,

ξ̇2 =−kf1ξ1ξ2 + kr1ξ3,

ξ̇3 = kf1ξ1ξ2 − kr1ξ3 − k2(ξ3 − ξ4), (36)

ξ̇4 = k2(ξ3 − ξ4) + kf3ξ5ξ6 − kr3ξ4,

ξ̇5 =−kf3ξ5ξ6 + kr3ξ4,

ξ̇6 =−kf3ξ5ξ6 + kr3ξ4,
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where ξi (i = 1, ..., 6) denotes the concentration of DNA
strand Xi, and coefficients kfi , kri (i = 1, 3), and k2
denote the binding, unbinding, and branch migration rate
constants, respectively. This reaction system generates out-
put strand X6 upon the input of strand X1, where X2 and
X5 are considered fuel strands and the others are consid-
ered signal strands. It has been reported that system (36)
can function as a gain element [12]. Through Steps 1 and
2, we obtain

Af (z)=

−kf1z1
kf

0

0 −kf3z4
kf

 , (37)

bf (z)=


kr1
kfTf

z2

kr3
kfTf

z3

 , (38)

Ag(x)=



−kf1x1
kf

kr1
kfTf

0 0

kf1x1
kf

−kr1+k2
kfTf

k2
kfTf

0

0
k2
kfTf

−k2+kr3
kfTf

kf3x2
kf

0 0
kr3
kfTf

−kf3x2
kf


,(39)

where bg(z) = 0, ε = Ts/Tf , x = [x1 x2]
T =

[ξ2/Tf ξ5/Tf ]
T , and z = [z1 z2 z3 z4]

T =

[ξ1/Ts ξ3/Ts ξ4/Ts ξ6/Ts]
T are the dimensionless state

variables, and Ts = ξ1(0) + ξ3(0) + ξ4(0) + ξ6(0), Tf =

ξ2(0) + ξ5(0), kf = max{kf1 , kf3}, and tr = Tskf t are
the dimensionless time variables. In this case, we can see
that Ag(x) is a compartment matrix. It is noted that Ag(x)

has a zero eigenvalue, which is also the Frobenius eigen-
value, related with the mass conservation law among the
four signal strands.

Now, for a given x(0) = x0, consider a non-singular
transformation T that transforms Ag(x0) into a Jordan
form:

Λ := TAg(x0)T
−1 =

[
O 0

0 A2

]
, (40)

where A2 ∈ R3×3 is a Hurwitz matrix. Then, the change
in coordinate can be performed as follows:

[
p

q

]
≜ Tz, (41)

transforms z-system into the following form:

ε

[
ṗ

q̇

]
=

[
0 0

0 A2

][
p

q

]

+T


−k′f1δx1

0 0 0

k′f1δx1 0 0 0

0 0 0 k′f3δx2

0 0 0 −k′f3δx2

T−1

[
p

q

]
, (42)

where p ∈ R, q ∈ R3, A2 ∈ R3×3, T ∈ R4×4,
δxi(t) = xi(t) − xi(0) for i = 1, 2, and k′fi = kfi/kf
for i = 1, 3. By numerically solving (42) with ε = 0 under
the condition that kfi = 5 × 10−4 nM−1s−1, kri = 0.7

s−1 (i = 1, 3), and k2 = 1 s−1 for the kinetic con-
stants; ξ2(0) = 2 × 104 and ξ5(0) = 1 × 104 nM for
fuel strands; and ξ1(0) = 1.0, ξ3(0) = 0, ξ4(0) = 0, and
ξ6(0) = 0 nM for signal strands, it is confirmed that A2

is Hurwitz with λ = −1.97, −0.98, −0.31, and the rela-
tion z4/z1 ≃ x1(0)/x2(0) is satisfied for the trajectories
on the manifold h. In fact, by directly solving the steady-
state equation of the z-system (26) with (39), we can also
obtain the following relations analytically:

h=

{
q ∈ R3

∣∣∣∣∣
[
p

q

]
= Tz,

z4 =
kf1kr3
kf3kr1

x1
x2
z1, z2 =

kf1Tfx1
kr1

z1, z2 = z3

}
.(43)

By substituting the three equations of (43) into the x-
system (25) with (37)–(38), we analytically obtain the fol-
lowing quasi-steady state model:

δ̇x = F (δx, p0, 0, 0) ≡ 0, (44)

where δx(t) = x(t) − x0, and p0 = z1(0) + z2(0) +

z3(0) + z4(0). Therefore, we conclude from Theorems 2
and 3 in [9] that for all tb > 0, there exist positive constants
k∗∗ and ε∗∗ such that for all w0 ∈ Ωw and ε ∈ (0, ε∗∗),∣∣∣∣z4(t)− kf1kr3

kf3kr1

x1(0)

x2(0)
z1(t)

∣∣∣∣ ≤ k∗∗ε, ∀t ≥ tb, (45)

which implies that the gain between the input ξ1 and the
output ξ6 is adjusted by the ratio of fuels ξ2(0)/ξ5(0). This
result is consistent with the estimate given in [12]. Inter-
estingly, the gain is determined by the ratio of the “initial”
concentrations between fuel strands. We illustrate the sim-
ulation result of the gain element, indicating that the gain is
approximately 2 (= 0.623/0.312), which is in agreement
with the ratio of ξ1(0)/ξ2(0) = 2 (Fig. 6). ♢
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Fig. 6 Simulation result of gain element (36).

4 Conclusions

In this study, we evaluated the regulation property of the
biomolecular PI control system by examining Steps 1–3.
Because it has been confirmed that the system has finite-
time regulation property, the tracking of the output signal
to the reference signal observed in the simulation has been
theoretically validated.

Furthermore, we analyzed the control performance of
the biomolecular PI control system designed by DNA reac-
tions. However, it might be possible to apply the finite-time
regulation property to other biomolecular reaction systems,
such as a control system designed in the field of synthetic
biology.
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Appendix
Definition 1 (Finite-time regulation property [9])

Consider a DNA feedback regulator system given by

ξ̇ = ψdfr(ξ), ξ(0) = ξ0,

yp = cdfrξ,
(a1)

for a time period t ∈ [0, t1], where ξ = [r ξTr̄ ]
T ∈ Dξ ⊂

Rζ is the state vector that is comprised of the reference
signal r ∈ R and other strands ξr̄ ∈ Rζ−1, and yp ∈ R is
the output signal. ψdfr : Dξ → Rζ is a nonlinear vector-
valued function characterized by the mass action law, and
cdfr ∈ R1×ζ is a constant vector. System (a1) is said to
have the finite-time regulation property if, for each of all
e > 0 and tb ∈ (0, t1), there exists a set of initial state
Ωξ ⊂ Dξ such that for all ξ0 ∈ Ωξ,

|yp(t)− r(t)| ≤ e, ∀t ∈ [tb, t1]. (a2)

Definition 2 (Fuel and signal strands [9]) Consider the
biomolecular reaction system described by

ξ̇ = ψ(ξ), ξ(0) = ξ0, (a3)

where ξ ∈ Dξ ⊂ Rζ is a state vector of which elements
are concentrations of DNA strands, and ψ : Dξ → Rζ is
a nonlinear function characterized by the mass action law.
Let Ifuel and Isignal be index sets such that ξi(0) ≫ ξj(0),
∀i ∈ Ifuel, ∀j ∈ Isignal and Ifuel

∪
Isignal = {1, ..., ζ}.

The symbol Xi is termed a signal strand for i ∈ Isignal,
and a fuel strand for i ∈ Ifuel.
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