246 research outputs found

    Correction to: ‘Violence in the prehistoric period of Japan: the spatio-temporal pattern of skeletal evidence for violence in the Jomon period’

    Get PDF
    Whether man is predisposed to lethal violence, ranging from homicide to warfare, and how that may have impacted human evolution, are among the most controversial topics of debate on human evolution. Although recent studies on the evolution of warfare have been based on various archaeological and ethnographic data, they have reported mixed results: it is unclear whether or notwarfare among prehistoric hunter–gathererswas common enough to be a component of human nature and a selective pressure for the evolution of human behaviour. This paper reports the mortality attributable to violence, and the spatio-temporal pattern of violence thus shown among ancient hunter–gatherers using skeletal evidence in prehistoric Japan (the Jomon period: 13 000 cal BC–800 cal BC). Our results suggest that the mortality due to violence was low and spatio-temporally highly restricted in the Jomon period, which implies that violence including warfare in prehistoric Japan was not common

    Violence and warfare in prehistoric Japan

    Get PDF
    The origins and consequences of warfare or largescale intergroup violence have been subject of long debate. Based on exhaustive surveys of skeletal remains for prehistoric hunter-gatherers and agriculturists in Japan, the present study examines levels of inferred violence and their implications for two different evolutionary models, i.e., parochial altruism model and subsistence model. The former assumes that frequent warfare played an important role in the evolution of altruism and the latter sees warfare as promoted by social changes induced by agriculture. Our results are inconsistent with the parochial altruism model but consistent with the subsistence model, although the mortality values attributable to violence between hunter-gatherers and agriculturists were comparable

    Effects of brassinolide on the growing of rice plants

    Get PDF
    Brassinosteroids are plant steroid hormones that are essential for plant growth. When germinated rice seeds were treated with brassinolide (BL), stems were elongated and root spiral formation was observed at 5 nM of BL. Such root spiral formation was not induced by other plant hormones such as auxin and gibberellin. Since weak non-steroidal brassinolide-like compound (NSBR1) also induced spiral formation, this root spiral induction can be used as the index in the search for BL-like compounds

    Isoxaben analogs inhibit chitin synthesis in the cultured integument of the rice stem borer Chilo suppressalis

    Get PDF
    Benzoylphenylureas (BPUs) were discovered as novel type insecticides about a half century ago; many analogs have been launched as insecticides and acaricides. BPUs are known to inhibit chitin synthesis in insects and other arthropods, but they have no effect against microorganisms such as fungi. We designed new chitin synthesis inhibitors based on the hypothesis that biomolecules that play important roles in cellulose and chitin biosynthesis are similar. In the full automatic modeling system (FAMS), the cellulose synthase was selected as a template three-dimensional structure. Thus, we focused on the structure of cellulose synthase inhibitor, isoxaben, to develop new chemistry. The 1, 1-diethylethyl [-C(CH₃)(CH₂CH₃)₂] group of isoxaben was changed to a 4-substituted phenyl group bearing Cl, Et, or Ph. These compounds significantly inhibited chitin synthesis in the cultured integument of the rice stem borer Chilo suppressalis. The activity of the 4-ethylphenyl analog was enhanced 30-fold by adding piperonyl butoxide to the culture medium

    Receptor-binding affinity and larvicidal activity of tetrahydroquinoline-type ecdysone agonists against Aedes albopictus

    Get PDF
    Tetrahydroquinolines (THQs), a class of nonsteroidal ecdysone agonists, are good candidates for novel mosquito control agents because they specifically bind to mosquito ecdysone receptors (EcRs). We have recently performed quantitative structure–activity relationship (QSAR) analyses of THQs to elucidate the physicochemical properties important for the ligand–receptor interaction. Based on previous QSAR results, here, we newly synthesized 15 THQ analogs with a heteroaryl group at the acyl moiety and evaluated their binding affinity against Aedes albopictus EcRs. We also measured the larvicidal activity of the combined set of previously and newly synthesized compounds against A. albopictus to examine the contribution of receptor-binding to larvicidal activity. Multiple regression analyses showed that the binding affinity and the molecular hydrophobicity of THQs are the key determinants of their larvicidal activity

    Criterion of molecular size to evaluate the bioaccumulation potential of chemicals in fish

    Get PDF
    To evaluate the bioaccumulation potential of chemicals in fish, a molecular-size descriptor, Dmax aver, has been used as a weight of evidence under the EU REACH. The Dmax aver value, however, is estimated on the basis of 3-D structures of possible stable conformers in a vacuum using OASIS software that requires expertise upon parameter input. We developed a method to calculate the 3-D conformers in water, which is more suitable for bioaccumulation potential evaluation in an aquatic environment, by introducing MD simulation. By examining the relationship of the calculated molecular size of 1665 chemicals with their reported BCF values, we found that 17.1 Å of Dmax aver or 15.6 Å of Dmax min was a threshold of molecular size in water to predict the low bioaccumulation (i.e., BCF<5000) of a chemical. Setting this threshold as a new standard would reduce the number of animal tests without compromising the quality of safety evaluation

    Permeability of the fish intestinal membrane to bulky chemicals

    Get PDF
    The ability to predict the environmental behavior of chemicals precisely is important for realizing more rational regulation. In this study, the bioaccumulation of nine chemicals of different molecular weights absorbed via the intestinal tract was evaluated in fish using the everted gut sac method. The amounts of chemicals that passed through the intestinal membrane after a 24-hr exposure were significantly decreased for chemicals with MW≥548 and Dmax min≥15.8 Å (or Dmax aver≥17.2 Å). These thresholds are consistent with those previously proposed in terms of MW (>800) and molecular size (Dmax min>15.6 Å or Dmax aver>17.1 Å) for the limit of permeable chemicals through the gill membrane. The results show that the same MW and Dmax criteria can be used to predict low bioaccumulation through both the gill membrane and the intestinal tract. These findings are helpful in reducing the need to conduct animal tests in environmental safety studies

    Gene transfer of GLT-1, a glial glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The glial glutamate transporter GLT-1 is abundantly expressed in astrocytes and is crucial for glutamate removal from the synaptic cleft. Decreases in glutamate uptake activity and expression of spinal glutamate transporters are reported in animal models of pathological pain. However, the lack of available specific inhibitors and/or activators for GLT-1 makes it difficult to determine the roles of spinal GLT-1 in inflammatory and neuropathic pain. In this study, we examined the effect of gene transfer of GLT-1 into the spinal cord with recombinant adenoviruses on the inflammatory and neuropathic pain in rats.</p> <p>Results</p> <p>Intraspinal infusion of adenoviral vectors expressing the GLT-1 gene increased GLT-1 expression in the spinal cord 2–21 days after the infusion. Transgene expression was primarily localized to astrocytes. The spinal GLT-1 gene transfer had no effect on acute mechanical and thermal nociceptive responses in naive rats, whereas it significantly reduced the inflammatory mechanical hyperalgesia induced by hindlimb intraplantar injection of carrageenan/kaolin. Spinal GLT-1 gene transfer 7 days before partial sciatic nerve ligation recovered the extent of the spinal GLT-1 expression in the membrane fraction that was decreased following the nerve ligation, and prevented the induction of tactile allodynia. However, the partial sciatic nerve ligation-induced allodynia was not reversed when the adenoviruses were infused 7 or 14 days after the nerve ligation.</p> <p>Conclusion</p> <p>These results suggest that overexpression of GLT-1 on astrocytes in the spinal cord by recombinant adenoviruses attenuates the induction, but not maintenance, of inflammatory and neuropathic pain, probably by preventing the induction of central sensitization, without affecting acute pain sensation. Upregulation or functional enhancement of spinal GLT-1 could be a novel strategy for the prevention of pathological pain.</p
    corecore