14 research outputs found

    Structural insights into tetraspanin CD9 function

    Get PDF
    Umeda, R., Satouh, Y., Takemoto, M. et al. Structural insights into tetraspanin CD9 function. Nat Commun 11, 1606 (2020). https://doi.org/10.1038/s41467-020-15459-

    Structural basis of Sec-independent membrane protein insertion by YidC

    Get PDF
    [プレスリリース]バイオサイエンス研究科膜分子複合機能学研究室の塚崎智也准教授らの研究グループが、タンパク質を細胞膜に組み込むメカニズムを解明しました(2014/04/17)Newly synthesized membrane proteins must be accurately inserted into the membrane, folded and assembled for proper functioning. The protein YidC inserts its substrates into the membrane, thereby facilitating membrane protein assembly in bacteria; the homologous proteins Oxa1 and Alb3 have the same function in mitochondria and chloroplasts, respectively1, 2. In the bacterial cytoplasmic membrane, YidC functions as an independent insertase and a membrane chaperone in cooperation with the translocon SecYEG3, 4, 5. Here we present the crystal structure of YidC from Bacillus halodurans, at 2.4 Å resolution. The structure reveals a novel fold, in which five conserved transmembrane helices form a positively charged hydrophilic groove that is open towards both the lipid bilayer and the cytoplasm but closed on the extracellular side. Structure-based in vivo analyses reveal that a conserved arginine residue in the groove is important for the insertion of membrane proteins by YidC. We propose an insertion mechanism for single-spanning membrane proteins, in which the hydrophilic environment generated by the groove recruits the extracellular regions of substrates into the low-dielectric environment of the membrane

    Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels

    Get PDF
    P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn2+ ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn2+ potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg2+. Overall, our work provides structural insights into the divalent cation modulations of P2X receptors

    The multidrug-resistance transporter MdfA from Escherichia coli: crystallization and X-ray diffraction analysis

    Get PDF
    The active efflux of antibiotics by multidrug-resistance (MDR) transporters is a major pathway of drug resistance and complicates the clinical treatment of bacterial infections. MdfA is a member of the major facilitator superfamily (MFS) from Escherichia coli and provides resistance to a wide variety of dissimilar toxic compounds, including neutral, cationic and zwitterionic substances. The 12-transmembrane-helix MdfA was expressed as a GFP-octahistidine fusion protein with a TEV protease cleavage site. Following tag removal, MdfA was purified using two chromatographic steps, complexed with a Fab fragment and further purified using size-exclusion chromatography. MdfA and MdfA–Fab complexes were subjected to both vapour-diffusion and lipidic cubic phase (LCP) crystallization techniques. Vapour-diffusion-grown crystals were of type II, with poor diffraction behaviour and weak crystal contacts. LCP lipid screening resulted in type I crystals that diffracted to 3.4 Å resolution and belonged to the hexagonal space group P6[1]22

    Proteoliposome-based Selection of a Recombinant Antibody Fragment Against the Human M2 Muscarinic Acetylcholine Receptor.

    Get PDF
    The development of antibodies against human G-protein-coupled receptors (GPCRs) has achieved limited success, which has mainly been attributed to their low stability in a detergent-solubilized state. We herein describe a method that can generally be applied to the selection of phage display libraries with human GPCRs reconstituted in liposomes. A key feature of this approach is the production of biotinylated proteoliposomes that can be immobilized on the surface of streptavidin-coupled microplates or paramagnetic beads and used as a binding target for antibodies. As an example, we isolated a single chain Fv fragment from an immune phage library that specifically binds to the human M2 muscarinic acetylcholine receptor with nanomolar affinity. The selected antibody fragment recognized the GPCR in both detergent-solubilized and membrane-embedded forms, which suggests that it may be a potentially valuable tool for structural and functional studies of the GPCR. The use of proteoliposomes as immunogens and screening bait will facilitate the application of phage display to this difficult class of membrane proteins

    Crystallization and preliminary X-ray diffraction analysis of YidC, a membrane-protein chaperone and insertase from Bacillus halodurans

    Get PDF
    YidC, a member of the YidC/Oxa1/Alb3 family, inserts proteins into the membrane and facilitates membrane-protein folding in bacteria. YidC plays key roles in both Sec-mediated integration and Sec-independent insertion of membrane proteins. Here, {\it Bacillus halodurans} YidC2, which has five transmembrane helices conserved among the other family members, was identified as a target protein for structure determination by a fluorescent size-exclusion chromatography analysis. The protein was overexpressed, purified and crystallized in the lipidic cubic phase. The crystals diffracted X-rays to 2.4{\AA} resolution and belonged to space group {\it P}2{\sb 1}, with unit-cell parameters {\it a} = 43.9, {\it b} = 60.6, {\it c} = 58.9{\AA}, {β\beta} = 100.3{^\circ}. The experimental phases were determined by the multiwavelength anomalous diffraction method using a mercury-derivatized crystal

    Outward open conformation of a Major Facilitator Superfamily multidrug/H⁺ antiporter provides insights into switching mechanism

    Get PDF
    薬剤耐性の原因「薬剤汲み出しタンパク質」の排出メカニズムを解明 --多剤排出トランスポーターMdfAの分子機構-- 京都大学プレスリリース. 2018-10-03.Multidrug resistance (MDR) poses a major challenge to medicine. A principle cause of MDR is through active efflux by MDR transporters situated in the bacterial membrane. Here we present the crystal structure of the major facilitator superfamily (MFS) drug/H⁺ antiporter MdfA from Escherichia coli in an outward open conformation. Comparison with the inward facing (drug binding) state shows that, in addition to the expected change in relative orientations of the N- and C-terminal lobes of the antiporter, the conformation of TM5 is kinked and twisted. In vitro reconstitution experiments demonstrate the importance of selected residues for transport and molecular dynamics simulations are used to gain insights into antiporter switching. With the availability of structures of alternative conformational states, we anticipate that MdfA will serve as a model system for understanding drug efflux in MFS MDR antiporters
    corecore