11 research outputs found

    In Vitro Comparative Study on Antineoplastic Effects of Pinoresinol and Lariciresinol on Healthy Cells and Breast Cancer-Derived Human Cells

    Get PDF
    Background: Herbal medicines are the preferred anticancer agents due to their lower cytotoxic effects on healthy cells. Plant lignans play an important role in treating various diseases, especially cancer. The present study aimed to evaluate the effect of podophyllotoxin, pinoresinol, and lariciresinol on cellular toxicity and inducing apoptosis in fibroblasts, HEK-293, and SkBr3 cell lines.Methods: An in vitro study was conducted from 2017 to 2019 at the Faculty of Biological Sciences, Tarbiat Modares University (Tehran, Iran). The cell lines were treated for 24 and 48 hours with different concentrations of lignans. Cell viability and apoptosis were examined using MTT and flow cytometry, respectively. Expression levels of cell cycle and apoptosis regulator genes were determined using quantitative real-time polymerase chain reaction. Data were analyzed using a two-way analysis of variance followed by Tukey’s HSD test. P<0.05 was considered statistically significant.Results: Podophyllotoxin significantly increased apoptosis in fibroblast cells compared to pinoresinol and lariciresinol (P<0.001). The percentage of cell viability of fibroblast cells treated for 48 hours with pinoresinol, lariciresinol, and podophyllotoxin was reduced by 49%, 47%, and 36%, respectively. Treatment with pinoresinol and lariciresinol significantly overexpressed pro-apoptotic genes and underexpressed anti-apoptotic genes in SkBr3 cells (P<0.001). SkBr3 cells treated with lariciresinol significantly reduced gene expression (P<0.001). Conclusion: Pinoresinol and lariciresinol can potentially be used as new therapeutic agents for the treatment of breast cancer

    6-Methoxy Podophyllotoxin Induces Apoptosis via Inhibition of TUBB3 and TOPIIA Gene Expressions in 5637 and K562 Cancer Cell Lines

    No full text
    Objective Podophyllotoxin (PTOX), a natural compound in numerous plants, contains remarkable biological properties that include anti-tumor, anti-viral such as anti-human im- munodeficiency virus (HIV) activities. In order to avoid its adverse effects, various com- pounds have been derived from PTOX. 6-methoxy PTOX (MPTOX) is one of the natural PTOX derivatives with an extra methoxy group. MPTOX is mostly isolated from the Linum species. This study has sought to determine the biological effects of MPTOX on cancer cell lines, 5637 and K562. Materials and Methods In this experimental study, we treated the 5637 and K562 cancer cell lines with MPTOX in a doseand time-dependent manner. Apoptosis was examined by flow cytometry and viability rate was analyzed by the MTT assay. Expressions of the tubulin (TUBB3) and topoisomerase II (TOPIIA) genes were determined by real-time poly- merase chain reaction (PCR). Results Treatment with MPTOX led to significant induction of apoptosis in cancer cells compared to control cells. Gene expression analysis showed reduced levels of TUBB3 and TOPIIA mRNA following MPTOX treatment. Conclusion MPTOX inhibited TUBB3 and TOPIIA gene expression and subsequently induced cell death through apoptosis. These results suggested that MPTOX could be considered a potential anti-tumor agent

    Analysis of 6-methoxy podophyllotoxin and podophyllotoxin in hairy root cultures of Linum album Kotschy ex Boiss

    Get PDF
    Linum album is a herbaceous medicinal plant that contains some lignans with antiviral and anticancer properties such as podophyllotoxin (PTOX) and 6-methoxy podophyllotoxin (MPTOX). In this research, hairy root cultures of L. album were established by transformation with Agrobacterium rhizogenes strains LBA9402, A4, AR15834 and A. tumefaciens strain C58C1 (pRiA4). The presence of PTOX and MPTOX in the hairy roots was verified by ESI/MS in positive ion mode. MPTOX was confirmed and its enantiomer determined by nuclear magnetic resonance spectroscopy and circular dichroism spectroscopy, respectively. PTOX and MPTOX production was determined by HPLC, in different lines of hairy roots. The results showed that all obtained hairy root lines produced higher yield of lignans than mother plant roots. In addition, the lignans content in the roots derived from A. rhizogenes strain LBA9402 was higher than in those obtained from A. tumefaciens strain C58C1.Fil: Ahmadian Chashmi, Najmeh. Tarbiat Modares University; IránFil: Sharifi, Mozafar. Tarbiat Modares University; IránFil: Yousefzadi, Morteza. Tarbiat Modares University; IránFil: Behmanesh, Mehrdad. Tarbiat Modares University; IránFil: Rezadoost, Hassan. Shahid Beheshti University; IránFil: Cardillo, Alejandra Beatriz. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Palazon, Javier. Universidad de Barcelona. Facultad de Farmacia; España
    corecore