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ABSTRACT 

Lead (Pb) is a hazardous heavy metal present in the environment which elicits oxidative stress in plants. 

To characterize the physiological and biochemical basis of Pb tolerance, Prosopis farcta seedlings were 

exposed to Hoagland’s solutions at six different Pb concentrations (0, 80, 160, 320, 400 and 480 µM) for 

different periods of time. As expected, application of Pb significantly increased hydrogen peroxide (H2O2) 

content. In response, P. farcta deployed the antioxidative defence mechanisms with significantly higher 

activities of superoxide dismutase (SOD), enzymes related to H2O2 removal, and also the increases in 

proline as a solute marker of stress. Increases were observed in nitric oxide (NO) production which could 

also act in triggering defense functions to detoxify Pb. Enhanced phenylalanine ammonia-lyase (PAL) 

activity at early days of exposure to Pb was correlated with increases in phenolic compounds. Significant 

increases in phenolic acids and flavonoids; daidzein, vitexin, ferulic acid and salicylic acid were observed 

with Pb treatment. Furthermore, the stress effects were followed by changes in free amino acid content 

and composition. Aspartic acid and glycine content was increased but glutamic acid significantly 

decreased. It is likely that stress signal transduction by NO and H2O2 mediated defence responses to Pb by 

coordination of antioxidative system and metabolic pathways of phenylpropanoid and amino acids. 

Keywords: Lead, enzymatic antioxidant, nitric oxide, phenylalanine amonia-lyase, phenolic acids, amino 

acids 

 

Abbreviation: H2O2: hydrogen peroxide, ROS: reactive oxygen species, NO: nitric oxide, PAL: 

phenylalanine ammonia-lyase, SOD: superoxide dismutase, CAT: catalase, GPX: guaiacol peroxidase, 

EtOAc: ethyl acetate, MeOH: methanol. 
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1. Introduction 

The impact of heavy metal pollution on human health and also its exorbitant persistence in the 

environment is a major ecological concern (Gupta et al., 2009). Lead, one of the most abundant globally 

distributed toxic elements, has attracted considerable interest by researchers. Accumulation of Pb causes a 

number of physiological, biochemical and structural disorders like unfavourable influences on the 

photosynthetic processes, chlorophyll contents, uptake of essential elements, biomass and root elongation 

(Ali et al., 2014a; Arias et al., 2010). One of the phytotoxic effects of Pb appears to be the disruption of 

balanced cellular redox status with concomitant induction of oxidative stress (Verma and Dubey, 2003). 

In line with this Pb and other heavy metal stresses have been reported stimulate reactive oxygen species 

(ROS) accumulation in variety of plants (Ali et al., 2014a, b). It is well-established that H2O2 

accumulation, as the most stable form of ROS, can have a negative effect on plant physiology but; 

particularly at low levels, can act as messengers involved in signal transduction pathways (Kováčik et al., 

2009). To ensure survival and growth under adverse environmental conditions, plants have developed 

protective mechanisms enabling them to counteract negative effects caused by metals abundance in their 

tissue. In addition, it has recently been suggested that nitric oxide (NO) - another bioactive molecule 

involved in signaling within plants - plays a center role in a variety of physiological and biochemical 

functions including protection against oxidative damage induced by stress (Singh et al., 2008; Singh et al., 

2013 ). To control the level of ROS and to protect the cells under stress condition, NO activates 

antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) 

and ascorbate peroxidase (APX) (Singh et al., 2013). SOD is the major superoxide radical scavenger and 

its enzymatic action results in H2O2 formation, which is toxic and must be eliminated by conversion to 

H2O in subsequent reactions by CAT and GPX. 

 

Plant phenolics are considered as parts of active defense responses and to have roles in H2O2 reduction in 

the phenol-coupled ascorbate peroxidase reaction (Dučić et al., 2008). Pb was reported to induce mRNA 

coding for phenylalanine ammonia-lyase (PAL), which is regarded as the rate limiting enzyme leading 

production of the phenolic group known as phenylpropanoid in the response of legume plants to metals 

(Pawlak-Spradaetal., 2011). Moreover, another phenolic, salicylic acid (SA) has been linked to the 

alleviation of heavy metal- induced growth inhibition in two melon genotypes by promoting antioxidant 

defence capacity, photosynthesis process and proline metabolism (Zhang et al., 2015). It should be noted 

that many studies also reported that NO together with H2O2 trigger signal transduction pathways to 

stimulate PAL and the accumulation of secondary metabolites in plants under stress conditions. However, 

metabolic networks which confer plant tolerance to heavy metal stress requires further work to be 

understood (Kováčik et al., 2009). Plant metabolism is known to undergo considerable reprogramming in 
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response to metal treatment. Several workers have emphasized the importance of the synthesis of metal 

chelating compounds to avoid heavy metal toxicity (Sharma and Dubey, 2005). These, chelating 

compounds include some charged amino acids for example, proline, and are likely to contribute to 

amelioration of negative impacts owing to heavy metal excess (Manara, 2012; Kováčik et al., 2010). Such 

chelating solutes contribute as an available source of carbon and nitrogen and also play other roles in 

heavy metal stress responses, including acting as signaling molecules, regulating ion transport and 

facilitating detoxification during stress (Dubay and Pessaraki, 1995; Xu et al., 2012). 

 

Prosopis species are perennial trees/shrubs that are found abundantly in arid and semi-arid zones of the 

world. They are well known for their resistance to heavy metal and have been used as indicator species to 

assess ecotoxicity of soils polluted by contaminants (Beramendi-Orosco et al., 2013; Usha et al., 2009). 

This stated there is little information available on strategies employed by Prosopis; particularly in P. 

farcta, that allows them to cope with Pb toxicity. The present work was conducted to evaluate the 

influence of Pb stress on the antioxidant defence system and the endogenous signaling molecules H2O2 

and NO. Moreover, the effect of Pb stress on the primary and secondary metabolism (amino acids and the 

phenylpropanoid pathway) and the activity PAL associated with phenolic compounds biosynthesis was 

investigated. By comprehensively, comparing these metabolites, we have improved our understanding of 

coordinated pathways involve in detoxification of heavy metal stress. Hydroponic system was used to 

provide potential to examine metal tolerance and magnitude of metal accumulation in plant species with 

greater precision than soil systems. 

 

2. Materials and methods  

 

2.1. Chemicals  

The Fluka A2161 amino acid reference solution for fluorescence detection, o-phthalaldehyde (OPA), 

salicylic acid, ferulic acid, cinnamic acid, caffeic acid, coumaric acid, gallic acid, daidzein, vitexin, 

myricetin, resveratrol, quercetin, kaempferol, naringinine, catechin, luteolin, diosmin, apigenine, rutin, 

orientin, genistin was all purchased from Sigma-Aldrich (Taufkirchen, Germany). 

 

2.2. Plant materials and growth conditions 

Seeds of Prosopis farcta were collected in western Ilam province, Iran. The healthy seeds of uniform size 

were selected and scarified with 98% sulphuric acid for 13 min and surface sterilized with 2% of sodium 

hypochlorite solution, followed by repeated washings with distilled water. Seeds were germinated by 

placing in a Petri dish with two layers of water-saturated filter paper. Germinated seedlings with 20 mm-
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long roots were then transferred into plastic containers with 2.5 dm3 of Hoagland nutrient solution (pH 

6.8). The seedlings were left to grow in a growth chamber under a cycle of 16 h light (200 µmol m-2 s-1) 

with a 27/22°C day/night temperature and 60–80% air humidity. The nutrient solution was renewed every 

5 days to prevent nutrient depletion. Each experiment was performed three times, consecutively (3 

containers per treatment each time). 

 

2.3. Treatment pattern and experimental design 

This study was conducted in two separate experiments. In the first, the 21-day-old seedlings were 

supplemented with 0, 80, 160, 320, 400 and 480 µM of lead (Pb in the form of Pb (C2H3CO2)2) with 

nutrient solution for 4 days (96 h). Based on the derived data step, one concentration of Pb (400 µM) was 

chosen to measure antioxidant enzymes and proline content, In the second approach, 21-day-old seedlings 

were grown in the same nutrient solution supplemented with chosen concentration of lead, but harvested 

after 0 (i.e. prior to start of treatment), 12, 24, 48, 72, 96 h of treatment and washed three times with 

distilled water. At each time point, shoots of plants were collected at random from each tray, frozen with 

liquid N2, and stored at -80˚C for analysis of amino acids, phenolic acids and flavonoids, NO, H2O2 

content and PAL activity. 

 

2.4. Analysis of Pb content 

Frozen primary leaves were ground to a fine powder in a mortar pre-cooled with liquid N2, weighed, and 

transferred to porcelain crucibles where they were dried out at 100˚C until constant weight was attained. 

Subsequently, dried samples were burnt to ashes at 500˚C for 6 h. The ashes were then dissolved with 0.1 

M HCl. Pb was analyzed in this acid extract according to the method described by Camacho- Cristobal 

and Gonzalez-Fontes (2002). Pb was measured using an atomic absorption spectrometer (Shimadzu AA-

6709). 

 

2.5. Antioxidant enzyme assay 

Liquid N2 frozen shoots (0.2 g) were crushed into a fine powder in a mortar and pestle. Soluble proteins 

were extracted by 50 mM potassium phosphate buffer (pH 7.0) containing 1 mM EDTA and 1% 

polyvinylpyrrolidone. The homogenate was centrifuged at 12000×g for 20 min at 4°C and then the 

supernatant was used for the following enzyme assays.  

Total SOD (E.C.1.15.1.1.) activity was assayed by monitoring the inhibition of photochemical reduction of 

nitroblue tetrazolium (NBT) according to the method of Giannopolitis and Ries (1977). One unit of SOD 
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was defined as the amount of enzyme required to cause 50% inhibition of the reduction of NBT as 

monitored at 560 nm. 

CAT (E.C.1.11.1.6.) activity was assayed according to the method of Cakmak and Marschner (1992). The 

reaction mixture was 25 mM sodium phosphate buffer (pH 7.0) and 10 mM H2O2. The reaction was 

initiated by the addition of 100 µL of the enzyme extract, and activity was determined by measuring the 

initial rate of disappearance of H2O2 at 240 nm for 1 min (E = 39.4/(mM cm)).  

GPX (E.C.1.11.1.7) activity was based on the determination of guaiacol oxidation (coefficient of 

absorbance 26.6 mM-1 cm-1) at 470 nm by H2O2. The reaction mixture contained 100 mM potassium 

phosphate buffer (pH 6.5), 16 mM guaiacol and 0.1 mL of 10% H2O2 in a 3 mL volume. The reaction was 

initiated by adding 100 µL enzyme extract and was followed for 3 min (Lin and Wang, 2002). Total 

soluble protein contents were determined according to the method of Bradford (1976), using bovine 

serum albumin to provide standards. 

2.6. Determination of proline concentration 

Proline was extracted and determined by the method of Bates et al. (1973). Plant samples were 

homogenized with 3% sulphosalicylic acid and the homogenate was centrifuged at 3000×g for 10 min. 

After acetic acid and acid ninhydrin were added, the supernatant was boiled for 1 h and then absorbance 

of the supernatant at 520 nm was determined. Proline concentration was calculated using a proline 

standard curve and expressed as mg g-1 dried weight. 

 

2.7. Nitric oxide content 

NO generation also quantified by determination of nitrite (NO2
¯) concentration in vivo using Griess 

reagent. Samples (0.2 mL) were incubated with 1.8 mL of 100 mM PO buffer (pH 7.0) and 0.2 mL of 

Griess reagent (1% sulfanilamide and 0.1% N-1-napthylethylenediamine dihydrochloride in 5% 

phosphoric acid solution) at room temperature for 10 min (Green et al., 1982). Absorbance of the reaction 

mixture was read at 540 nm and concentration of NO determined from a calibration curve prepared using 

sodium nitrite as standard. 

 

2.8. Hydrogen peroxide (H2O2) determination 

To determine H2O2 concentration, root tissue (100 mg) was extracted with 5 mL trichloroacetic acid 

(TCA; 0.1%, w/v) in an ice bath and centrifuged at 12000×g for 15 min (Velikova et al., 2000). An 

aliquot (0.5 mL) of supernatant was added to 0.5 mL of phosphate buffer (pH 7.0) and 1 mL of 1 M KI. 
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The absorbance of the mixture was read at 390 nm. H2O2 content was determined using the extinction 

coefficient 0.28 M−1 cm−1 and amount expressed as nmol g-1 FW. 

2.9. Quantitative determination of total phenolics 

 

Folin-Ciocalteu reagent was used to measure total phenolic content according to the method of Akkol et 

al. (2008). One mL of methanolic extract was mixed with 5 mL Folin-Ciocalteu reagent and 4 mL sodium 

carbonate solution 7.0%. The mixtures were allowed to stand for 2 h and then the absorbance was 

measured at 765 nm. Gallic acid was used as a standard for the calibration curve. Total phenol values are 

expressed in terms of mg gallic acid equivalents in 1 g DW. 

 

2.9.1. Qualitative extraction of phenolic acid and flavonoids using HPLC 

Plant samples (0.2 g FW) were extracted with methanol (3 x). The methanol extracts were pooled and the 

solvent was evaporated under vacuum at 35˚C. The residue was suspended in acetonitrile (50 mL), and 

extracted three times with hexane (20 mL) to remove lipid components. The hexane extracts were 

discarded, and the acetonitrile solution was dried over anhydrous magnesium sulfate. The acetonitrile was 

removed in vacuum at 35˚C (Owen et al., 2003). The dried residue was suspended in methanol (5 mL) to 

separation of phenolic acids by HPLC (Agilent Technologies 1260 infinity, USA). The stationary phase 

was a C18 column (Perfectsil Target ODS-3 (5 µm), 250 × 4.6 mm) MZ Analysenthecnik, Mainz, 

Germany). The elution solvent was 2% acetic acid in water (solvent A) and methanol (solvent B) (Owen 

et al., 2003) with a gradient system as followed: 0–2 min 5% B, 2–10 min 25% B, 10–20 min 40% B, 20–

30 min 50% B, 30–40 min 100% B, 40–50.0 min 5% B. Phenolic acids in the eluant were detected with a 

UV dual-array detector (HP 1040M) set at 278, 300 and 340 nm at a flow rate of 1 mL/minute. 

Extraction of flavonoid compounds was performed following Keinanen et al. (2001). Briefly, green tissue 

(0.2 g DW) was ground in liquid N2 and transferred to a centrifuge tube with 1.5 mL of 40% aqueous 

methanol containing 0.5% acetic acid. After shaking for 3 h, samples were centrifuged (12 min, 4000×g) 

and the supernatant was used for HPLC analysis. The separation of flavonoids compounds was carried out 

using the method of Gudej and Tomczyk (2004). The gradient mobile phase contained 0.5% phosphoric 

acid in water (A solvent) and acetonitrile (solvent B), and the UV detector was set at 254, 280, 300 and 

350 nm. The elution was as follows: 0–30 min 1 8% B, 30–60 min 67% B, 60–65 min 18% B, 65–70 min 

18% B. Chromatography was performed at 25˚C at a flow rate of 0.8 mL/minute. The amounts of 

phenolic compounds in the extracts were calculated from standard curves of authentic standards.  

 

2.10. Extraction and assay of PAL 
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The protein extract was used as a crude enzyme solution. The reaction mixture was composed of 0.15 mL 

of crude enzyme and 1 mL of extraction buffer. The reaction started with the addition of 0.35 mL of 100 

mM phenylalanine and after 1 h incubation at 37˚C, was stopped with the addition of 100 µL of 5 M HCl. 

The mixture was extracted three times with ethyl acetate (EtOAc). The EtOAc extract was air-dried, re-

dissolved in pure MeOH and analyzed using HPLC as described for the determination of the phenolic 

acids (Wakabayashi et al., 1997). The enzyme activity was expressed in terms of the amount of cinnamic 

acid (CA) produced for 1 h per mg of protein. 

 

2.11. Quantitative estimation of total amino acids 

Free amino acids content was estimated according to the method of Lee and Takahashi (1966). Briefly, 

0.1 g plant material was incubated overnight in 70% ethanol followed by washing with distilled water. 

Volumes of 0.5 mL acetate buffer, 0.5 mL ninhydrin solution and 3 mL of 55% glycerol-water diluents 

were added to 1 mL of the extract. This was then heated in a water bath at 100°C for 30 minutes. 

Immediately after removal from the water bath, test tubes were cooled in running tap water and gently 

shaken. The absorbance was read using a spectrophotometer at 570 nm. Glycine in 0.5 M, pH 5.6 citrate 

buffer was used as the standard. 

 

2.11.1. Chromatographic separation of amino acids 

Plant samples (0.2 g FW) were ground in liquid N2 to a fine powder and mixed with 2 mL of ethanol and 

water (80:20 v/v), left for 10 min, collected and centrifuged. The extraction procedure was repeated on 

the pellet. Aliquots of the extracts were evaporated to dryness under vacuum and the residue was 

dissolved in 1 mL H2O (Di Martino et al., 2003). The measurement of amino acid concentrations was 

performed using an HP 1100 liquid chromatograph with fluorimetric detector FLD HP 1100 and using 

precolumn derivatization with OPA. Separation was carried out with a Zorbax Exlipse AAA column (4.6 

× 150 mm, 3.5-µm particle size; Agilent Technologies, USA). Mobile phase A was aqueous buffer (25 

mM Na2HPO4/ NaH2PO, pH 7.2)/ tetrahydrofuran (95:5, v/v) and mobile phase B was aqueous buffer (25 

mM Na2HPO 4/ NaH2PO, pH 7.2)/ methanol/ acetonitrile (50:35:15, v/v/v). The elution was facilitated by 

gradient program as follows: 0–0.6 min 10% B, 0.6–9.0 min 50% B, 9.0–48 min 60% B, 48.0–51.0 min 

100% B, 51.0–56.0 min 100% B, 56.0–57.0 min 10% B, 57.0–59.9 min 10% B. The constant flow rate 

was 0.5 mL/min. Fluorescence detection and quantification was carried out by excitation wavelength 230 

nm and emission wavelength 455 nm. Sample peaks were identified by comparison of retention time with 

reference substances (Biermann et al., 2013). 
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2.12. Statistical analysis 

All analyses were conducted at least three times, each with three independent repetitions. The analysis of 

variance and the Duncan test (P ≤ 0.05) of mean comparison were performed using the MSTATC 

program ver. 1.4. 

 

3. Results 

3.1. Pb content 

In initial experiments, 21-day-old seedlings of P. farcta were exposed to different concentrations of Pb (0, 

80, 160, 320, 400 and 480 µM) for 96 h. The seedlings accumulated increasing concentrations of Pb, in a 

dose-dependent manner. The Pb levels in shoots showed positive linear relationships with the Pb 

concentration in the nutrient solution up to 400 µM (Table 1). 

 

3.2. Antioxidant enzyme activities and proline content 

Table 1 shows the effect of lead stress on three different antioxidant enzymes such as SOD, CAT and 

GPX in Prosopis shoots. Results show that the activity of SOD, a key enzyme for catalyzing the 

dismutation of superoxide radical into hydrogen peroxide (H2O2) and molecular oxygen (O2), 

significantly increased under different concentration of Pb. The activity of CAT followed a similar trend 

to SOD and their greatest activities were observed at 400 µM Pb. The pattern of increased GPX activities 

proved to be different with increased activity first seen at 160 µM Pb and was still increased with at 480 

µM Pb. With proline content, as a compatible solute, significant increases over controls were first with at 

320 µM Pb (72%) exposure and did not significantly differed at high concentrations of Pb. Based on these 

preliminary observations, in order to monitor biochemical and metabolites changes in Prosopis in 

response to Pb, a concentration of 400 µM Pb was selected. Furthermore, the effects of 400 µM Pb were 

examined over a 0, 12, 24, 48, 72, 96 timecourse.  

 

3.3. NO and H2O2 generation.  

To begin to assess if NO and H2O2 have roles in response to Pb stress, the levels of these signals was 

measured in seedlings following Pb treatment. The data in Table 2 clearly show NO production increases 

over time following Pb treatment. The amount of detected NO peaked at 12 h (a 28% increase over 

controls) but then decreased at 96 h following Pb treatment (14% over controls). In parallel to changes in 

NO content, the amount of H2O2 also increased significantly in response to Pb toxicity, suggesting ROS 
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signaling events and / or oxidative damage (Table 2). At 12 h of treatment, it reached a 1.62 fold increase 

compared to that in the control (12 h), however, this was reduced at 72 h to 1.24 fold. 

3.4. PAL activity 

Based on the observation that heavy metal induced NO and H2O2 accumulation, it was hypothesized that 

Pb might trigger NO and H2O2 generation to induce PAL activity to feed into pathways leading to the 

production of antioxidant metabolites such as phenolics compounds. Therefore, the effect of Pb on PAL 

activity was also determined. As shown in Table 2, at 24 and 48 h of treatment, PAL activity increased by 

63% and 35% over controls and then declined at 96 h compared to equivalent controls. 

 

3.5. The phenolic composition and concentration 

The involvement of the secondary metabolism in Pb resistance was tested by measuring the levels of 

phenolic compounds. Total phenolics content at 12 h of treatment remained unaffected compared to 

controls but increased thereafter (Table 2). Total phenolic content appeared to particularly increase at 72 

and 96 h following treatment. However, phenolic compounds increased by ~25% over controls between 

24 and 48 h of treatment but thereafter there appeared to be no significant difference between the time 

points.  

The HPLC analysis was then performed to identify and quantify phenolic metabolites in shoots under 

stress. In particular, the levels of 19 phenolic standards, 4 phenolic acids (salicylic, ferulic, cinnamic and 

caffeic acids) and 9 flavonoids derivatives (daidzein, vitexin, resveratrol, myricetin, quercetin, 

kaempferol, naringinine, luteolin, diosmin) were measured. Figure 1a shows a prominently increase in 

salicylic acid (1.86 fold) at 72 and 96 h of treatment over their respective controls. A significant increase 

for ferulic and cinnamic acid occurred between 12 and 72 h of treatment (Fig. 1b, c); whereas, caffeic 

acid content decreased exception at 72 h of treatment compared to controls (Fig. 1d). A strikingly strong 

increase was observed for daidzein at 96 h of treatment, and the increase was 2.34 fold higher than that in 

96 h control (Fig.1e). Likewise, vitexin showed a linear increment in content during the treatment period 

(Fig. 1f). A significant increase was observed for resveratrol and myricetin at 48, 72 and 96 h of 

treatment, while their levels were kept at the same level as in the respective controls at 12 and 24 h of 

treatment (Fig 1g, h). Quercetin Levels showed no change and kaempferol was clearly reduced in the 

shoots only at 48 h of treatment compared with control (Fig 1i, j). The most striking reduction was seen in 

naringinine content , some four fold at 48 h of treatment, before a ~60 % of increase at 96 h over the 

respective controls (Fig 1k). The level of luteolin and diosmin showed fluctuating patterns during time-

course in both group: treated plants and controls (Fig 1l, m). 
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3.6. The quantitative and qualitative contents of free amino acids 

The data regarding the effect of lead stress on total amino acid contents have been shown in Table 2. The 

results showed that compared to controls, Pb-stressed plantlets had significantly higher concentrations of 

total amino acids at all time periods with the exception of 12 h data set. Pb stress induced a marked 

accumulation of amino acids in the shoots by 52 and 54% at 48 and 72 h of stress, respectively.  

The HPLC analysis of Prosopis exposed to Pb stress was performed to identification of the specific 

changes in amino acid metabolites. In shoots, 14 basic amino acids were detected. Pb treatment greatly 

altered the composition and concentration of these free amino acids (Fig. 2). In general, the greatest 

quantitative and qualitative alterations in the levels of free amino acids were seen at 48 and 72 h of Pb 

treatment compared to their untreated controls. Considering changes in individual amino acids in response 

to Pb stress, the greatest increase was observed for Asp between 12 to 72 h of Pb exposure and was in the 

range of 2.94 to 14 times over their respective controls (Fig. 2a). Furthermore, considerable increases 

were observed for Gly and Thr at 24, 72 and 96 h of treatment compared to controls (Fig. 2b); as did Arg, 

although to a lesser extent (Fig. 2c). In contrast, a significant decrease in Glu level (from 12 to 72 h of 

treatment) revealed a marked shift between these two acidic amino acids. However, Glu content was two 

times higher compared to the equivalent control at 96 h of treatment (Fig. 2d). A group of amino acids, 

including Leu, Ile, Val, Met, Ala, exhibited a clear increase and then decrease at 72 and 96 h of treatment, 

respectively, but did not significantly change during the first 48 h of treatment (Fig. 2e, f, g, h, i). Pb 

stress did not result in a marked shift in the level of Ser and His (Fig 2j, k). Interestingly, amino acids 

deriving from the shikimate pathway; tyrosine and phenylalanine, exhibited the greatest increase at an 

earlier timepoints; 24 and 48 h of treatment compared to controls (Fig. 2l, m). These data were indicative 

of differential amino acid metabolism at differing times following the application of Pb.  

4. Discussion 

Plants generally experience oxidative damage when exposed to lead and other metals (Ali et al., 2014a, b; 

Bharwana et al., 2013). In the present study, increased ROS was found under metal stress as indicated by 

H2O2 contents, which either causing widespread damage or serving as signaling molecules (Dat et al., 

2000). This increase in H2O2 accumulation during treatment changes the redox status of the cell and 

induces the production of antioxidants and the activation of antioxidant mechanisms (Manara, 2012). In 

addition to H2O2, NO may also be involved in the signal transduction pathway triggered by heavy metals 

(Neill et al. 2003). Under biotic and abiotic stresses, NO generation and a parallel accumulation of 

ROS can activate resistance mechanisms in plants either independently or synergistically (Zhang et 

al., 2007). In this study, accumulation of NO and H2O2 at 12 and 24 h of treatment, respectively, may 
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trigger some common defense machineries in the plants such as stress related proteins in the 

defensive antioxidant system. Plants are equipped with complex antioxidant system to overcome ROS 

caused damages which are effective at different levels of stress-induced deterioration (Hegedüs et al., 

2001). In the present investigation, the observed enhancement in activities of antioxidant enzyme proteins 

such as SOD, CAT and GPX in response to Pb exposure is in agreement with other published reports of 

heavy metals (Singh et al., 2008). Increased activity of CAT and SOD points towards their induction to 

quench and remove higher levels of O2
− and H2O2 generated due to Pb stress (Sharma and Dubey, 2005; 

Ali et al., 2014). Our results indicate that CAT increased faster than GPX production, showing that CAT 

might be more responsible for H2O2 elimination during the early hours of Pb stress than GPX. 

Interestingly, this period of increased GPX activity supports a link between GPX activity and amino acid 

accumulation, established substrates for its function, in response to Pb stress. Increased antioxidant 

enzyme activities could arise from de novo gene expression or altered levels of enzyme inhibitors in order 

to achieve a balance between oxidant and antioxidant levels under Pb phyotoxicity. 

The observed significant increase in PAL activity at early 48 h of Pb treatment was consistent with the 

similar findings in Panax ginseng roots in response to metal stress (Babar Ali et al., 2006). Further a link 

with NO was suggested from the work of Delledonne et al., (1998) who showed that inhibition of NO 

production markedly reduces the accumulation of PAL and chalcone synthase, the first enzyme of the 

branch specific for flavonoids and isoflavonoids in plants. Complementary to this, Kováčik et al., (2009) 

found that expression levels of PAL and also its activity can be elicited by both NO and ROS. Our 

collective findings suggest a crucial role for NO and H2O2 in regulating the activity of PAL and 

consequently the induction of phenylpropanoid biosynthesis pathway during stress. These would 

represent key events in conferring tolerance to Pb exposure in P. farcta. 

 

Following increased PAL activity, our study also considered the role of phenolics in conferring tolerance 

to Pb. In accordance with our results, there are some reports showing the influence of heavy metal stress 

on the phenolic metabolism. Phenolic compounds can protect against metal toxicity by metal chelation 

and direct scavenging of reactive oxygen species. Phenolics, especially flavonoids and 

phenylopropanoids, are oxidized by peroxidase, reduced by ascorbate, and act in H2O2 scavenging system 

(Michalak, 2006). Accumulation of essential amino acids and phenolic compounds like salicylic acid 

(which directly involved in stress signaling), catechol and catechin play key roles in responses of plants to 

biotic and abiotic stress (Poschenrieder et al., 2006; Heim et al., 2002) and there is a good link with 

responses to heavy metal excess (Kováčik et al., 2010). The cinnamic acid derivatives, epicatechin, and 

rutin increased in the presence of cadmium and played an important role in the metabolism of Erica 
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andevalensis to survive in heavy metal polluted soils (Márquez-García et al., 2012). The aromatic amino 

acids phenylalanine, tyrosine and tryptophan were utilized not only for protein synthesis, but also served 

as precursors for a wide range of secondary metabolites such as flavonoids, phenolic acids, phytoalexins 

(Babar Ali et al., 2006). An increase in the amount of aromatic amino acids, some flavonoids and 

phenolic acids in the Prosopis shoots in response to Pb, confirms the close relationships between these 

compounds in responding to this stress.  

Plants have evolved a variety of protective mechanisms to ensure survival and growth under adverse 

environmental conditions. The synthesis and accumulation of amino acids, known as compatible solutes, 

represent ubiquitous mechanisms for stress amelioration in plants (Di Martino et al., 2003). They may 

play a more active role in the stabilization of enzymes and/or membranes, in addition to functioning as 

carbon and energy storage during limited growth and photosynthesis (Gilbert et al., 1998). Thus, the 

accumulation of excess total amino acid in response to Pb can be regarded as an important adaptive 

response of plants to avoid Pb toxicity (Sharma and Dubey, 2005), which was consistent with the increase 

amino acids content in Prosopis seen in our experiments. The amino acid proline is known to occur 

widely in higher plants and normally accumulates in large quantities in response to environmental stresses 

such as heavy metal stress (Chen et al., 2002). It is possible that proline chelates metal ions to improve 

heavy metal stress tolerance. Additionally, there is increasing evidence of cross-talk between these of NO 

and ROS signalling pathways and proline metabolism in plant cells. The considerable accumulation of 

proline in response to NO and ROS has been observed in plants under adverse environmental conditions 

like metal stress (Rejeb et al., 2014; Hasanuzzaman and Fujita, 2013). In addition, proline metabolism 

appears to play a key role in triggering signal molecules, which are involved in allowing the adaptation of 

plants to various environmental constraints (Rejeb et al., 2014).  

The branched-chain amino acid aspartate (Asp) feeds into the synthesis of Asn, Lys, Met, Thr, and Ile as 

well as the conversion of Thr into Gly (Angelovici et al., 2009). A Zn-asparagine complex may reduce Zn 

toxicity and asparagine by acting as ligand towards Cd, Pb, and Zn (Sharma and Dietz, 2006). Should this 

mechanism be correct the increased amino acids that we have observed in our own experiments, would 

reduce the ability of Pb to contribute to cellular toxicity. The reduction in glutamate content with Pb (Fig. 

2d) would be consistent with its utilization as substrate in the synthesis of Glu, Gly, proline and possibly 

the recycling of ammonia produced during the synthesis of other amino acids (Di Martino et al., 2003). 

We can suggest that the increase of Gly is associated with GSH and phytochelatin biosynthesis as the 

most important markers in heavy metal stress. Also, the fluctuating content of amino acid Ser could be 

linked to Gly and Cys biosynthesis during time course of stress (Ahsan et al., 2012). Also, Met is a central 

metabolite in antioxidant defense and metal sequestration (Satoh et al., 2007). Thus, taking all these data 
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together nitrogen metabolism and particularly amino acid anabolism is central to the response of plants to 

heavy metals.  

5. Conclusion 

The response to heavy metal stress involves a complicated signal transduction network that is activated by 

sensing the heavy metal by signaling molecules such as NO and H2O2. By using P. farcta, as a resistant 

plant to heavy metal, we present evidence suggesting that H2O2 and NO cooperatively trigger defense 

functions such as activation of antioxidant system, induction of PAL and enhancement the content of 

phenolic compounds. Also, changes in NO and ROS production and changes in amino acid metabolism 

may be concurrent events in plants under Pb stress. Further research by using NO and ROS 

generators/scavengers, might reveal novel and interesting links, which may contribute to a better 

understanding the connection of these metabolisms with signal molecules in the adaptation of plants to 

environmental stresses. 
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Tables 

Table 1. Absorbed Pb, antioxidant enzymes, proline contents of Prosopis shoots under different concentaration of 

Pb. Data are means ± SD. Values within rows followed by the same letter(s) are not significantly different at (P ≤ 

0.05) level. 

 

Table 2. The content of NO, H2O2, Total phenolics, Total amino acids and PAL activity of Prosopis shoots under 

control and Pb treated conditions. Data are means ± SD. Values within rows followed by the same letter(s) are not 

significantly different at (P ≤ 0.05) level. 

 

Figures 

Fig. 1. Content of phenolic acids and flavonoids in Prosopis shoots: (a) salicylic acid, (b) ferulic acid, (c) cinnamic 

acid, (d) caffeic acid, (e) daidzein, (f) vitexin, (g) resveratrol, (h) myricetin, (i) quercetin, (j) kaempferol, (k) 

naringinine, (l) luteolin, (m) diosmin. The plants were exposed to Pb treatment for 96 h. Data are means ± SD. 

Values within rows followed by the same letter(s) are not significantly different at (P ≤ 0.05) level. 

 

Fig. 2. Accumulation of free amino acids (nmol g FW, n =3) in Prosopis shoots: (a) aspartic acid, (b) 

glycine+threonin, (c) arginine, (d) glutamic acid, (e) leucine, (f) isoleucine, (g) valine, (h) methionine, (i) alanine, (j) 

serine, (k) histidine, (l) tyrosine, (m) phenylalanine. The plants were exposed to Pb treatment for 96 h. Data are 

means ± SD. Values within rows followed by the same letter(s) are not significantly different at (P ≤ 0.05) level. 
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Tables 

Table 1. Absorbed Pb, antioxidant enzymes, proline contents of Prosopis shoots under different concentaration of 

Pb. Data are means ± SD. Values within rows followed by the same letter(s) are not significantly different at (P ≤ 

0.05) level. 

 

Table 2. The content of NO, H2O2, Total phenolics, Total amino acids and PAL activity of Prosopis shoots under 

control and Pb treated conditions. Data are means ± SD. Values within rows followed by the same letter(s) are not 

significantly different at (P ≤ 0.05) level. 

 

 

 

Treatment 

Pb (µM) 

Absorbed Pb 

(mg/kg) 

SOD activity 

[U mg-1(protein)] 

CAT activity 

[µmol (H2O2) mg-1 

(protein) min-1] 

GPX activity 

[µmol (guaiacol) 

mg-1 (protein) min-1] 

Proline content 

(mg g-1 DW) 

0 1.3 ± 0.61e 12.3 ± 0.30d 2.19 ± 0.30d 9.6 ± 1.27d 1.52 ± 0.13bc 

80 27.4 ± 1.7d 21.1 ± 2.60c 3.81 ± 0.46bc 11.8 ± 1.45cd 1.60 ± 0.19bc 

160 38.3 ± 2.5c 26.7 ± 1.92b 4.23 ± 0.55bc 13.7 ± 1.82c 1.97 ± 0.23b 

320 55.4 ± 5.1b 35.0 ± 2.41a 5.47 ± 0.71a 17.1 ± 0.98b 2.63 ± 0.25a 

400 68 .7 ± 4.9a 36.5 ± 3.01a 4.72 ± 0.52ab 19.9 ± 1.56a 2.46 ± 0.17a 

480 69.2 ± 4.6a 29.1 ± 3.22b 3.35 ± 0.63c 32.4 ± 1.92a 2.39 ± 0.11a 

sample Time-course 

[h] 

NO content 

[nmol g-1(DW)] 

H2O2 content 

[nmol g-1(FW)] 

PAL activity 

[µmol CA mg
-1

 

(protein) h
-1

] 

Total phenolics  

[mg g-1 (DW)] 

Total amino 

acids 

[mmol g-1(FW)] 

 0 65.5 ± 4.10b 25.32 ± 1.43e 5.80 ± 0.43f 18.33 ± 1.86d 1.96 ± 0.13e 

 12 62.1 ± 4.82b 27.14 ± 1.27de 6.96 ± 0.68cd 20.58 ± 1.27cd 1.95 ± 0.11e 

control 24 68.7 ± 5.63b 27.19 ± 2.12de 7.02 ± 0.32c 21.55 ± 2.12cd 2.14 ± 0.14de 

 48 68.2 ± 4.65b 24.05 ± 1.36e 7.58 ± 0.65c 21.85 ± 1.58cd 2.43 ± 0.10de 

 72 64.2 ± 5.24b 29.19 ± 1.91cd 6.56 ± 0.61de 22.05 ± 0.90cd 2.79 ± 0.22d 

 96 61.6 ± 4.33bc 30.20 ± 0.94cd 6.50 ± 0.48de  24.75 ± 2.01bc 3.11 ± 0.08c 

 12 79.6 ± 4.23a 43.93 ± 2.05a 7.43 ± 0.30c 21.38 ± 1.63c 2.25 ± 0.09de 

 24 71.8 ± 4.91b 38.51 ± 2.71b 11.46 ± 0.49a 26.32 ± 1.93b 2.87 ± 0.17c 

treatment 48 66.1 ± 3.96b 31.92 ± 1.56c 10.24 ± 0.77b 27.39 ± 2.42b 3.71 ± 0.26b 

 72 58.4 ± 6.21cd 36.44 ± 3.09b 6.26 ± 0.56e 36.71 ± 3.34a 4.32 ± 0.14a 

 96 53.9 ± 5.16d 37.82 ± 2.48b 5.47 ± 0.33f 39.19 ± 2.71a 3.65 ± 0.19b 
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Fig. 1. Content of phenolic acids and flavonoids in Prosopis shoots: (a) salicylic acid, (b) ferulic acid, (c) cinnamic 

acid, (d) caffeic acid, (e) daidzein, (f) vitexin, (g) resveratrol, (h) myricetin, (i) quercetin, (j) kaempferol, (k) 

naringinine, (l) luteolin, (m) diosmin. The plants were exposed to Pb treatment for 96 h. Data are means ± SD. 

Values within rows followed by the same letter(s) are not significantly different at (P ≤ 0.05) level. 

 

 

 

 

 

e
cde cde cde

bc

a

e

b

de
cd

de

a

0

20

40

60

80

100

120

0 12 24 48 72 96

Lu
te

o
lin

 (
µ

g 
g-1

D
W

) 

Time of treatment (h)

l control treatment

e

d
cd c c

a

e

c
cd cd c

b

0

5

10

15

20

25

0 12 24 48 72 96

D
io

sm
in

 (
µ

g 
g-1

D
W

) 

Time of treatment (h)

m control treatment



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

 

d d
de de

e
de

d

c

b

a

c

e

0

100

200

300

400

500

600

0 12 24 48 72 96

A
sp

ar
tic

 a
ci

d
 (

nm
o

l g-
1

F
W

)

time of treatment (h)

a control treatment

c c c c c cc c

b

c

a a

0

20

40

60

80

100

120

140

0 12 24 48 72 96

G
ly

ci
ne

+
T

hr
eo

ni
n 

(n
m

o
l g-

1 
F

W
)

time of treatment (h)

b control treatment

d d

f

e
e

b

d d

f

c
b

a

0

20

40

60

80

100

120

140

0 12 24 48 72 96

A
rg

in
in

e 
(n

m
o

l g
-1

F
W

)

Time of treatment (h)

c control treatment



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

 

a a

b

a

c

e

a
b

e

c

d

b

0

20

40

60

80

100

120

140

0 12 24 48 72 96

G
lu

ta
m

ic
 a

ci
d

 (
nm

o
l g-

1 
F

W
)

time of treatment (h)

d control treatment

bcd

ef ef

cde de

a

bcd

f
ef

cd

b
bc

0

5

10

15

20

25

30

0 12 24 48 72 96

Le
uc

in
e 

(n
m

o
l g

-1
F

W
)

time of treatment (h)

e control treatment

d d d

c
c

a

d d
d

c

b
b

0

5

10

15

20

25

30

0 12 24 48 72 96

Is
o

le
uc

in
e 

(n
m

o
l g-

1
F

W
)

time of treatment (h)

f control treatment



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

 

de de

ef

cd

bc b

de
bcd

f

bc

a

ef

0

20

40

60

80

0 12 24 48 72 96

V
al

in
e 

(n
m

o
l g

-1
F

W
)

time of treatment (h)

g control treatment

d d d

d
c

a

d

e

d

c

b
b

0

40

80

120

160

0 12 24 48 72 96

M
et

hi
o

ni
ne

 (
nm

o
l g

-1
F

W
)

time of treatment (h)

h control treatment

b b b b

c

a

b b

c

b
b

c

0

20

40

60

80

100

0 12 24 48 72 96

A
la

ni
ne

 (
nm

o
l g

-1
F

W
)

Time of treatment (h)

i control treatment



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

 

ab

de e
de

bc

a

ab
bc

d

e

bc
ab

0

50

100

150

200

250

300

0 12 24 48 72 96

S
er

in
e 

(n
m

o
l g-

1 
F

W
)

tima of treatment (h)

j control treatment

bc

de de

a

bcd
bcdbc bc

cd

e

b

de

0

100

200

300

400

500

0 12 24 48 72 96

H
is

tid
in

e 
(n

m
o

l g
-1

 F
W

)

time of treatment (h)

k control treatment

cd cd
d

a

bc

a

cd
cd

b
a

a

cd

0

4

8

12

16

20

0 12 24 48 72 96

T
yr

o
si

ne
 (

nm
o

l g
-1

F
W

)

Time of treatment (h)

l control treatment



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

Fig. 2. Accumulation of free amino acids (nmol g FW, n =3) in Prosopis shoots: (a) aspartic acid, (b) 

glycine+threonin, (c) arginine, (d) glutamic acid, (e) leucine, (f) isoleucine, (g) valine, (h) methionine, (i) alanine, (j) 

serine, (k) histidine, (l) tyrosine, (m) phenylalanine. The plants were exposed to Pb treatment for 96 h. Data are 

means ± SD. Values within rows followed by the same letter(s) are not significantly different at (P ≤ 0.05) level. 
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Highlights 

o Endogenous signaling molecules contents (NO and H2O2) increased in Prosopis farcta shoots at 

the early times after lead (Pb) feeding. 

o Phenylalanine ammonia lyase (PAL) activity enhanced at the early days of exposure to Pb. 

o Following increased PAL activity, significant increases in phenolic acids and flavonoids; 

daidzein, vitexin, ferulic acid and salicylic acid were observed in the fed Prosopis with Pb. 

o Pb treatment altered the composition and concentration of some free amino acids in Prosopis 

shoots. 
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