596 research outputs found

    Growth methods for controlled large-area fabrication of high-quality graphene analogs

    Get PDF
    In some embodiments, the present disclosure pertains to methods of growing chalcogen-linked metallic films on a surface in a chamber. In some embodiments, the method comprises placing a metal source and a chalcogen source in the chamber, and gradually heating the chamber, where the heating leads to the chemical vapor deposition of the chalcogen source and the metal source onto the surface, and facilitates the growth of the chalcogen-linked metallic film from the chalcogen source and the metal source on the surface. In some embodiments, the chalcogen source comprises sulfur, and the metal source comprises molybdenum trioxide. In some embodiments, the growth of the chalcogen-linked metallic film occurs by formation of nucleation sites on the surface, where the nucleation sites merge to form the chalcogen-linked metallic film. In some embodiments, the formed chalcogen-linked metallic film includes MoS2

    Design of a Haptic Interface for Medical Applications using Magneto-Rheological Fluid based Actuators

    Get PDF
    This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy weight can significantly undermine the stability and transparency of a teleoperated system. In this work, the potential benefits of MRF-based actuators to the field of haptics in medical applications are studied. Devices developed with such fluids are known to possess superior mechanical characteristics over conventional servo systems. These characteristics significantly contribute to improved stability and transparency of haptic devices. This idea is evaluated and verified through both theoretical and experimental points of view. The design of a small-scale MRF-based clutch, suitable for a multi-DOF haptic interface, is discussed and its performance is compared with conventional servo systems. This design is developed into four prototype clutches. In addition, a closed-loop torque control strategy is presented. The feedback signal used in this control scheme comes from the magnetic field acquired from embedded Hall sensors in the clutch. The controller uses this feedback signal to compensate for the nonlinear behavior using an estimated model, based on Artificial Neural Networks. Such a control strategy eliminates the need for torque sensors for providing feedback signals. The performance of the developed design and the effectiveness of the proposed modeling and control techniques are experimentally validated. Next, a 2-DOF haptic interface based on a distributed antagonistic configuration of MRF-based clutches is constructed for a class of medical applications. This device is incorporated in a master-slave teleoperation setup that is used for applications involving needle insertion and soft-tissue palpation. Phantom and in vitro animal tissue were used to assess the performance of the haptic interface. The results show a great potential of MRF-based actuators for integration in haptic devices for medical interventions that require reliable, safe, accurate, highly transparent, and stable force reflection

    Second harmonic microscopy of monolayer MoS2

    Get PDF
    We show that the lack of inversion symmetry in monolayer MoS2 allows strong optical second harmonic generation. Second harmonic of an 810-nm pulse is generated in a mechanically exfoliated monolayer, with a nonlinear susceptibility on the order of 1E-7 m/V. The susceptibility reduces by a factor of seven in trilayers, and by about two orders of magnitude in even layers. A proof-of-principle second harmonic microscopy measurement is performed on samples grown by chemical vapor deposition, which illustrates potential applications of this effect in fast and non-invasive detection of crystalline orientation, thickness uniformity, layer stacking, and single-crystal domain size of atomically thin films of MoS2 and similar materials.Comment: 6 pages, 4 figure

    The relationship between top management team (TMT) metacognition, entrepreneurial orientation and firm performance in Small and Medium Enterprises (SMEs)

    Get PDF
    This study integrates entrepreneurial orientation and top management team (TMT) behavioural integration, as a mediator and moderator respectively, to determine the effect of TMT metacognition on firm performance in SMEs. Fifteen hundred SMEs were surveyed and 140 usable returns were used in this study. The result revealed that risk in entrepreneurial orientation is often associated with lower firm performance and innovativeness and proactiveness could be considered the mechanisms through which TMT metacognition contributes most to higher organisational performance. This finding is significant for SMEs, whose resources are limited, and TMT could consider less risky projects, but still maintaining its innovativeness and proactiveness, particularly in the niche market areas. Furthermore, the empirical result supported previous findings that top managers’ abilities and behaviour collectively as a team could be seen as an important factor in their innovative and competitive outcomes in SMEs

    Blue shifting of the A exciton peak in folded monolayer 1H-MoS2

    Full text link
    The large family of layered transition-metal dichalcogenides is widely believed to constitute a second family of two-dimensional (2D) semiconducting materials that can be used to create novel devices that complement those based on graphene. In many cases these materials have shown a transition from an indirect bandgap in the bulk to a direct bandgap in monolayer systems. In this work we experimentally show that folding a 1H molybdenum disulphide (MoS2) layer results in a turbostratic stack with enhanced photoluminescence quantum yield and a significant shift to the blue by 90 meV. This is in contrast to the expected 2H-MoS2 band structure characteristics, which include an indirect gap and quenched photoluminescence. We present a theoretical explanation to the origin of this behavior in terms of exciton screening.Comment: 16 pages, 8 figure

    A Bibliometric Review of Technostress: Historical Roots, Evolution and Central Publications of a Growing Research Field

    Get PDF
    While previous research has provided critical insights into the different perspectives, methods, and theories on technostress, there is currently no bibliometric review available that clarifies the evolution and structure of the field. We use three bibliometric methods to assess the body of 252 technostress publications until 2019: reference publication year spectroscopy, co-word analysis, and co-citation analysis. In doing so, we analyze how the technostress field has evolved over time, clarify the interconnected concepts forming the discourse and identify the most influential works
    corecore