21 research outputs found

    AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water

    Get PDF
    AlGaInN ridge waveguide laser diodes are fabricated to achieve single-mode operation with optical powers up to 100 mW at ∼420  nm∼420  nm for visible free-space, underwater, and plastic optical fiber communication. We report high-frequency operation of AlGaInN laser diodes with data transmission up to 2.5 GHz for free-space and underwater communication and up to 1.38 GHz through 10 m of plastic optical fiber

    Distributed feedback InGaN/GaN laser diodes

    Get PDF
    We have realised InGaN/GaN distributed feedback laser diodes emitting at a single wavelength in the 42X nm wavelength range. Laser diodes based on Gallium Nitride (GaN) are useful devices in a wide range of applications including atomic spectroscopy, data storage and optical communications. To fully exploit some of these application areas there is a need for a GaN laser diode with high spectral purity, e.g. in atomic clocks, where a narrow line width blue laser source can be used to target the atomic cooling transition. Previously, GaN DFB lasers have been realised using buried or surface gratings. Buried gratings require complex overgrowth steps which can introduce epi-defects. Surface gratings designs, can compromise the quality of the p-type contact due to dry etch damage and are prone to increased optical losses in the grating regions. In our approach the grating is etched into the sidewall of the ridge. Advantages include a simpler fabrication route and design freedom over the grating coupling strength.Our intended application for these devices is cooling of the Sr+ ion and for this objective the laser characteristics of SMSR, linewidth, and power are critical. We investigate how these characteristics are affected by adjusting laser design parameters such as grating coupling coefficient and cavity length

    Recent progress in distributed feedback InGaN/GaN laser diodes

    Get PDF
    Laser diodes based on Gallium Nitride (GaN) are useful devices in a wide range of applications including atomic spectroscopy, data storage and optical communications. To fully exploit some of these application areas there is a need for a GaN laser diode with high spectral purity, e.g. in atomic clocks, where a narrow linewidth blue laser source can be used to target the atomic cooling transition. We report on the continuous wave, room temperature operation of a distributed feedback laser diode (DFB-LD) with high-order notched gratings. The design, fabrication and characterization of DFB devices based on the (Al,In) GaN material system is described. A single peak emission at 408.6 nm with an optical power of 20 mW at 225 mA and a side mode suppression ratio (SMSR) of 35 dB was achieved. Additionally, we demonstrate the use of a GaN DFB-LD as a transmitter in visible optical communications system. We also present results from a DFB-LD optimized for laser cooling of Sr+

    GaN-based distributed feedback laser diodes for optical communications

    Get PDF
    Over the past 20 years, research into Gallium Nitride (GaN) has evolved from LED lighting to Laser Diodes (LDs), with applications ranging from quantum to medical and into communications. Previously, off-the-shelf GaN LDs have been reported with a view on free space and underwater communications. However, there are applications where the ability to select a single emitted wavelength is highly desirable, namely in atomic clocks or in filtered free-space communications systems. To accomplish this, Distributed Feedback (DFB) geometries are utilised. Due to the complexity of overgrowth steps for buried gratings in III-Nitride material systems, GaN DFBs have a grating etched into the sidewall to ensure single mode operation, with wavelengths ranging from 405nm to 435nm achieved. The main motivation in developing these devices is for the cooling of strontium ions (Sr+) in atomic clock applications, but their feasibility for optical communications have also been investigated. Data transmission rates exceeding 1 Gbit/s have been observed in unfiltered systems, and work is currently ongoing to examine their viability for filtered communications. Ultimately, transmission through Wavelength Division Multiplexing (WDM) or Orthogonal Frequency Division Multiplexing (OFDM) is desired, to ensure that data is communicated more coherently and efficiently. We present results on the characterisation of GaN DFBs, and demonstrate their capability for use in filtered optical communications systems

    Applications of Single Frequency Blue Lasers

    Get PDF
    Gallium nitride (GaN) sources are becoming a regular part of today's world and are now key devices for lighting infrastructures, communications systems and quantum applications, amongst others. In particular, many applications have seen the shift from LEDs to laser diodes to make use of higher powers, higher bandwidths and increased transmission distances. Laser communication systems are well established, however there are applications where the ability to select a single emitted wavelength is highly desirable, such as quantum atomic clocks or in filtered communication systems. Distributed feedback (DFB) lasers have been realised emitting at a single wavelength where the grating structure is etched into the sidewall of the ridge. The main motivation in developing these lasers is for the cooling of ions in atomic clocks; however their feasibility for optical communications is also explored. Narrow linewidth lasers are desirable and this paper will explore how this is achieved. Data rates in excess of 1 Gbit/s have also been achieved in a directly modulated, unfiltered system. These devices lend themselves towards wavelength division multiplexing and filtered optical communications systems and this will be analysed further in the work presented here

    Continuous-wave operation of (Al,In)GaN distributed-feedback laser diodes with high-order notched gratings

    Get PDF
    We report on the continuous-wave, room-temperature operation of a distributed-feedback laser diode (DFB-LD) with high-order notched gratings. The design, fabrication, and characterization of DFB devices, which are based on the (Al,In)GaN material system, is described. The uncoated devices exhibited single-wavelength emission at 408.6 nm with an optical power of 20 mW at 225 mA. A side-mode suppression ratio (SMSR) of 35 dB was achieved, with a resolution-limited full-width at half maximum of 6.5 pm

    Dynamic Device Characteristics and Linewidth Measurement of InGaN/GaN Laser Diodes

    Get PDF
    We report on the characterization and analysis of a GaN-based distributed feedback laser diode (DFB-LD) with 3 rd-order laterally etched sidewall gratings centered at a wavelength of 420 nm. We also compare the device parameters with two commonly used Fabry-Perot (FP) devices operating at 450 nm and 520 nm. Intrinsic properties of the devices were extracted, including damping factor, carrier and photon lifetimes, modulation efficiency, differential gain, and parasitic capacitance. These parameters showed that the DFB exhibits a lower damping rate and parasitic capacitance while demonstrating a higher modulation efficiency, indicating that the DFB shows good potential for communications applications. Additionally, spectral linewidth of a GaN DFB is reported. To the authors' knowledge, this is the first demonstration of parameter extraction and spectral linewidth measurement for GaN-based DFB-LDs

    Electronic properties of semiconductors

    Get PDF

    Laser arrays transform printing

    No full text
    corecore