98 research outputs found

    Biomedical Signal and Image Processing

    Get PDF
    First published in 2005, Biomedical Signal and Image Processing received wide and welcome reception from universities and industry research institutions alike, offering detailed, yet accessible information at the reference, upper undergraduate, and first year graduate level. Retaining all of the quality and precision of the first edition, Biomedical Signal and Image Processing, Second Edition offers a number of revisions and improvements to provide the most up-to-date reference available on the fundamental signal and image processing techniques that are used to process biomedical information. Addressing the application of standard and novel processing techniques to some of today’s principle biomedical signals and images over three sections, the book begins with an introduction to digital signal and image processing, including Fourier transform, image filtering, edge detection, and wavelet transform. The second section investigates specifically biomedical signals, such as ECG, EEG, and EMG, while the third focuses on imaging using CT, X-Ray, MRI, ultrasound, positron, and other biomedical imaging techniques. Updated and expanded, Biomedical Signal and Image Processing, Second Edition offers numerous additional, predominantly MATLAB, examples to all chapters to illustrate the concepts described in the text and ensure a complete understanding of the material. The author takes great care to clarify ambiguities in some mathematical equations and to further explain and justify the more complex signal and image processing concepts to offer a complete and understandable approach to complicated concepts

    Biomedical Signal and Image Processing

    Get PDF
    Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based

    Elizabeth Koch, oboe and John Warren, clarinet

    Get PDF
    Kennnesaw State University School of Music presents Faculty Recital: Elizabeth Koch, oboe and John Warren, clarinet.https://digitalcommons.kennesaw.edu/musicprograms/1546/thumbnail.jp

    Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier

    Get PDF
    Purpose: Pancreatic ductal adenocarcinoma (PDAC) is largely incurable due to late diagnosis. Superior early detection biomarkers are critical to improving PDAC survival and risk stratification. Experimental Design: Optimized meta-analysis of PDAC transcriptome datasets identified and validated key PDAC biomarkers. PDAC-specific expression of a 5-gene biomarker panel was measured by qRT-PCR in microdissected patient-derived FFPE tissues. Cell-based assays assessed impact of two of these biomarkers, TMPRSS4 and ECT2, on PDAC cells. Results: A 5-gene PDAC classifier (TMPRSS4, AHNAK2, POSTN, ECT2, SERPINB5) achieved on average 95% sensitivity and 89% specificity in discriminating PDAC from non-tumor samples in four training sets and similar performance (sensitivity = 94%, specificity = 89.6%) in five independent validation datasets. This classifier accurately discriminated PDAC from chronic pancreatitis (AUC = 0.83), other cancers (AUC = 0.89), and non-tumor from PDAC precursors (AUC = 0.92) in three independent datasets. Importantly, the classifier distinguished PanIN from healthy pancreas in the PDX1-Cre;LSL-KrasG12D PDAC mouse model. Discriminatory expression of the PDAC classifier genes was confirmed in microdissected FFPE samples of PDAC and matched surrounding non-tumor pancreas or pancreatitis. Notably, knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability and TMPRSS4 knockdown also blocked PDAC migration and invasion. Conclusions: This study identified and validated a highly accurate 5-gene PDAC classifier for discriminating PDAC and early precursor lesions from non-malignant tissue that may facilitate early diagnosis and risk stratification upon validation in prospective clinical trials. Cell-based experiments of two overexpressed proteins encoded by the panel, TMPRSS4 and ECT2, suggest a causal link to PDAC development and progression, confirming them as potential therapeutic targets

    Scholarship Series: KSU Faculty Showcase

    Get PDF
    Kennesaw State University School of Music presents Faculty Showcase, a KSU School of Music Scholarship Series concert.https://digitalcommons.kennesaw.edu/musicprograms/1534/thumbnail.jp

    Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier

    Get PDF
    Purpose Pancreatic ductal adenocarcinoma (PDAC) is largely incurable due to late diagnosis. Superior early detection biomarkers are critical to improving PDAC survival and risk stratification. Experimental Design Optimized meta-analysis of PDAC transcriptome datasets identified and validated key PDAC biomarkers. PDAC-specific expression of a 5-gene biomarker panel was measured by qRT-PCR in microdissected patient-derived FFPE tissues. Cell-based assays assessed impact of two of these biomarkers, TMPRSS4 and ECT2, on PDAC cells. Results: A 5-gene PDAC classifier (TMPRSS4, AHNAK2, POSTN, ECT2, SERPINB5) achieved on average 95% sensitivity and 89% specificity in discriminating PDAC from non-tumor samples in four training sets and similar performance (sensitivity = 94%, specificity = 89.6%) in five independent validation datasets. This classifier accurately discriminated PDAC from chronic pancreatitis (AUC = 0.83), other cancers (AUC = 0.89), and non-tumor from PDAC precursors (AUC = 0.92) in three independent datasets. Importantly, the classifier distinguished PanIN from healthy pancreas in the PDX1-Cre;LSL-KrasG12D PDAC mouse model. Discriminatory expression of the PDAC classifier genes was confirmed in microdissected FFPE samples of PDAC and matched surrounding non-tumor pancreas or pancreatitis. Notably, knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability and TMPRSS4 knockdown also blocked PDAC migration and invasion. Conclusions: This study identified and validated a highly accurate 5-gene PDAC classifier for discriminating PDAC and early precursor lesions from non-malignant tissue that may facilitate early diagnosis and risk stratification upon validation in prospective clinical trials. Cell-based experiments of two overexpressed proteins encoded by the panel, TMPRSS4 and ECT2, suggest a causal link to PDAC development and progression, confirming them as potential therapeutic targets

    Minimally invasive and computer-navigated total hip arthroplasty: a qualitative and systematic review of the literature

    Get PDF
    ABSTRACT: BACKGROUND: Both minimally invasive surgery (MIS) and computer-assisted surgery (CAS) for total hip arthroplasty (THA) have gained popularity in recent years. We conducted a qualitative and systematic review to assess the effectiveness of MIS, CAS and computer-assisted MIS for THA. METHODS: An extensive computerised literature search of PubMed, Medline, Embase and OVIDSP was conducted. Both randomised clinical trials and controlled clinical trials on the effectiveness of MIS, CAS and computer-assisted MIS for THA were included. Methodological quality was independently assessed by two reviewers. Effect estimates were calculated and a best-evidence synthesis was performed. RESULTS: Four high-quality and 14 medium-quality studies with MIS THA as study contrast, and three high-quality and four medium-quality studies with CAS THA as study contrast were included. No studies with computer-assisted MIS for THA as study contrast were identified. Strong evidence was found for a decrease in operative time and intraoperative blood loss for MIS THA, with no difference in complication rates and risk for acetabular outliers. Strong evidence exists that there is no difference in physical functioning, measured either by questionnaires or by gait analysis. Moderate evidence was found for a shorter length of hospital stay after MIS THA. Conflicting evidence was found for a positive effect of MIS THA on pain in the early postoperative period, but that effect diminished after three months postoperatively. Strong evidence was found for an increase in operative time for CAS THA, and limited evidence was found for a decrease in intraoperative blood loss. Furthermore, strong evidence was found for no difference in complication rates, as well as for a significantly lower risk for acetabular outliers. CONCLUSIONS: The results indicate that MIS THA is a safe surgical procedure, without increases in operative time, blood loss, operative complication rates and component malposition rates. However, the beneficial effect of MIS THA on functional recovery has to be proven. The results also indicate that CAS THA, though resulting in an increase in operative time, may have a positive effect on operative blood loss and operative complication rates. More importantly, the use of CAS results in better positioning of acetabular component of the prosthesis
    • …
    corecore