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Reduced Intestinal Tumorigenesis in APCmin Mice
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Robert M. Najarian, Dimitrios C. Ziogas, XinHua Chen, Efi Kokkotou*

Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

Background: Melanin-concentrating hormone (MCH) is an evolutionary conserved hypothalamic neuropeptide that in
mammals primarily regulates appetite and energy balance. We have recently identified a novel role for MCH in intestinal
inflammation by demonstrating attenuated experimental colitis in MCH deficient mice or wild type mice treated with an
anti-MCH antibody. Therefore, targeting MCH has been proposed for the treatment of inflammatory bowel disease. Given
the link between chronic intestinal inflammation and colorectal cancer, in the present study we sought to investigate
whether blocking MCH might have effects on intestinal tumorigenesis that are independent of inflammation.

Methodology: Tumor development was evaluated in MCH-deficient mice crossed to the APCmin mice which develop
spontaneously intestinal adenomas. A different cohort of MCH2/2 and MCH+/+ mice in the APCmin background was
treated with dextran sodium sulphate (DSS) to induce inflammation-dependent colorectal tumors. In Caco2 human
colorectal adenocarcinoma cells, the role of MCH on cell survival, proliferation and apoptosis was investigated.

Results: APCmin mice lacking MCH developed fewer, smaller and less dysplastic tumors in the intestine and colon which at
the molecular level are characterized by attenuated activation of the wnt/beta-catenin signaling pathway and increased
apoptotic indices. Form a mechanistic point of view, MCH increased the survival of colonic adenocarcinoma Caco2 cells via
inhibiting apoptosis, consistent with the mouse studies.

Conclusion: In addition to modulating inflammation, MCH was found to promote intestinal tumorigenesis at least in part by
inhibiting epithelial cell apoptosis. Thereby, blocking MCH as a therapeutic approach is expected to decrease the risk for
colorectal cancer.
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Introduction

Melanin-concentrating hormone (MCH) is an evolutionarily

conserved 17- to 19-amino-acid cyclic neuropeptide which was

first recognized for its role in the aggregation of skin melanosomes

in teleost fish in response to an environmental threat. In the last

decade, important functions for MCH in mammals have emerged

including the regulation of food intake, sleep, anxiety and glucose

metabolism [1]. However, as of today, the focus on MCH research

has been on its centrally mediated effects and, among one

thousand publications concerning MCH, only twenty address

aspects of its peripheral actions, an area which remains largely

unexplored. This is despite reports documenting the presence of

MCH in peripheral tissues and organs, including the intestine and

colon [2,3,4]. Our own data also demonstrate MCH immunore-

activity in rat myenteric and submucosal plexus [5].

We have recently reported that mRNA expression of MCH and

MCHR1 are upregulated in the afflicted mucosa of patients with

inflammatory bowel disease (IBD) [5]. Most importantly, mice

lacking MCH were found to be protected from acute experimental

colitis [5] and C. difficile toxin-A mediated ileitis [6], suggesting

a proinflammatory role of MCH. At the molecular level, we

discovered that in colonic epithelial cells, MCHR1 expression is

upregulated in response to an inflammatory milieu [5,6]. In turn,

in the same cells activation of MCHR1 stimulated the expression

of various proinflammatory cytokines and chemokines [5,6], most

likely by activating erk1/2 and NFkB, as has been described for

the neuropeptides substance P and neurotensin [7,8].

In the present study, we investigated whether MCH might play

a role in intestinal tumorigenesis based on a) the expression of

MCHR1 on colonocytes, b) our previous studies indicating the

proinflammatory properties of MCH in the intestine, [5,6], and c)

the well-established link between inflammation and cancer [9]. We

first examined expression of MCHR1 on human colonic

adenocarcinomas and in mouse LGR5 positive intestinal stem

cells. Subsequently, we tested the effects of MCH on the survival

and proliferation of Caco2 colonic epithelial cells. The impact of

MCH ablation in intestinal tumor development was interrogated
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using APCmin mice, a model which shares genetic and phenotypic

similarities to human colorectal neoplasia [10,11]. Notably in

humans, mutations in the APC gene represent an initiating factor

in the process of colon carcinogenesis and can be detected in the

vast majority of familial adenomatous polyposis (FAP) patients,

and in 60–80% of sporadic colorectal tumors [12].

In APCmin mice, a mutation in the apc gene prevents the APC

complex from binding to and phosphorylating beta-catenin,

a downstream effector of the wnt signalling pathway [10,13]. As

a consequence, beta-catenin, instead of being marked for

proteosomal degradation, is transported to the nucleus where it

activates transcription of target genes, including the oncogene c-

myc [14,15]. Depending on the genetic background and

additional environmental factors, APCmin mice develop 30–50

intestinal adenomas, predominantly in the distal part of the small

intestine [16,17,18]. However, in response to a colonic irritant like

DSS, which triggers an inflammatory response, these mice develop

large colonic tumors, in particular close to the rectum, well in

advance of the development of tumors in their small intestine [19].

In our study we used both of these models and we obtained

consistent results suggesting an inflammation-independent tumor

promoting effect of MCH.

Materials and Methods

Ethics Statement
All studies were carried out according to the recommendations

in the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health and approved by the Beth Israel

Deaconess Medical Center’s Institutional Animal Care and Use

Committee. To minimize suffering, mice were euthanized prior to

tissue harvesting.

Mice
MCH+/2 mice were crossed with APCmin/+ mice (Jackson

Laboratories, Bar Harbour, Maine), both of the C57BL6

background, to yield the following compound genotypes:

MCH+/+APCmin/+ and MCH2/2APCmin/+, (described

herein for simplicity as WT and MCH-KO, respectively).

Genotyping for MCH was performed as previously described10.

Genotyping of APCmin mice was performed using the standard

PCR protocol provided by Jackson Laboratory. LGR5 (leucine-

rich-repeat-containing G-protein-coupled receptor 5)-labeled mice

(Lgr5tm1(cre/ERT2)Cle/J) were purchased from Jackson Labo-

ratories. Mice were maintained in a controlled environment with

a 12 h light/dark cycle, and unlimited access to food (standard

rodent chow) and water.

Intestinal Tumor Development in APCmin Mice Lacking
MCH
Male MCH+/+APCmin/+ (WT) (n = 15) and MCH2/2APC-

min/+ (MCH-KO) mice (n = 18) were sacrificed at 14 weeks of

age and the small intestine was divided in three equal segments:

proximal, medial and distal. After cleaning the small intestines by

briefly washing with ice-cold PBS, tumors in each segment were

counted and measured macroscopically by the same investigator

using an electronic calliper (VWR). If necessary, lesions were

verified using a dissecting microscope (Bausch & Lomb, Stereo-

zoom 5, zoom range 0.8–4.0). Tissues were fixed overnight in 10%

buffered formalin and the distal third of the small intestine was

prepared as Swiss rolls. Paraffin-embedded H&E stained tissue

sections were used for histological analysis.

DSS-induced Colorectal Tumor Development in APCmin
Mice Lacking MCH
Colitis was induced in 6-week old female MCH+/+APCmin/+

(WT) (n = 24) and MCH2/2APCmin/+ (MCH-KO) mice

(n = 32) by 7 days of treatment with 2% (w/v) Dextran Sulfate

Sodium (DSS, MP Biomedicals, Solon, OH, USA) dissolved in

their drinking water 9. Mice were evaluated for colonic tumor

development at 11 weeks of age. Colons were briefly rinsed with

ice-cold PBS. Lesions were counted and measured macroscopi-

cally as described above. Tissues were then fixed overnight in 10%

buffered formalin and prepared as modified Swiss rolls. Paraffin-

embedded specimens were cut to 5-micrometer sections and

stained with hematoxylin and eosin (H&E) for histological

analyses.

Immunostaining
Immunostaining was performed in paraffin sections by the

Specialized Histopathology Core at the Dana-Farber/Harvard

Cancer Center. Antigen retrieval was achieved by EDTA in all

cases except p-erk1/2 where citrate was used. Following endog-

enous peroxidase and protein blocking (Dako), the primary

antibodies for Ki67 (Vector Labs cat#VP-RM04 Rabbit poly-

clonal, 1:250 dilution), beta-catenin (BD Pharmingen cat#610154

Mouse Monoclonal, 1:150 dilution), c-myc (Epitomics cat#1472-1

Rabbit monoclonal, 1:1000 dilution with TSA kit from PerkinEl-

mer) and p-erk1/2 (Cell Signaling Technologies cat#4370, 1:150

dilution) were added for 1 hour followed by incubation with

secondary labeled anti-mouse or anti-rabbit antibodies and color

visualization (En Vision kit, DAKO). Apoptotic cells were labeled

with TdT (1:16 dilution) using the ApopTag peroxidase in situ

apoptosis detection kit (Millipore cat#S7100). Images were taken

using a Zeiss Imager 1 at 106magnification and scoring of the

staining was performed by an investigator blinded to the group

assignments.

In studies involving analysis of MCHR1 expression, we used

a rabbit polyclonal anti-MCHR1 antibody. This antibody was

raised against a conserved epitope in human, rat and mouse

sequences and in an in vitro functional assay was found to block

MCH-mediated inhibition of intracellular cAMP levels [6]. In

immunohistochemical studies, the MCHR1 positive neurons

identified using this antibody in brain and the enteric nervous

system had the expected distribution [5]. Most importantly,

treatment of mice with this anti-MCHR1 antibody resulted in

attenuation of intestinal inflammation [6]. MCHR1 expression

was examined in formalin-fixed intestinal frozen sections of

patients with colorectal adenocarcinoma and controls (n = 4 per

group, obtained from Origene), of APCmin mice with intestinal

tumors, and of Lgr5tm1(cre/ERT2)Cle/J mice. MCHR1 expres-

sion was also evaluated in human (Caco2) and murine (MCA-38)

colon adenocarcinoma cells grown in coverslips. Slides were

incubated with anti-MCHR1 or pre-immune IgG serving as

a negative control (1:200 in Protein Block-Dako) for 30 min at

room temperature, followed by incubation with an Alexa Fluor-

488 (green) or Alexa Fluor-546 (red) anti-rabbit secondary

antibody (Invitrogen), 1:2000 in Protein Block, for 30 min at

room temperature. Slides were mounted using Prolong Gold

antifade with DAPI (Invitrogen). Images were taken using a Zeiss

LSM510 META confocal system at 406magnification.

Cell Treatments
Caco2 human colorectal adenocarcinoma cells were obtained

from American Type Culture Collection. Cells growing in

complete media (20% FBS) at 60–70% confluence were serum

MCH and Intestinal Tumorigenesis
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starved (2% FBS) overnight and then incubated for 48 hrs in

media containing 2% FBS in the presence of various treatments:

MCH (2.4 mg/ml, Bachem Bioscience), IGF-1(10 nM), MCH plus

IGF-1, or 20% FBS as a positive control. Cell viability was

measured using the MTT cell proliferation assay (ATCC). Cell

proliferation was measured by BrdU incorporation using a com-

mercially available kit (Cell Proliferation Elisa, BrdU; Roche

Diagnostics). Cell apoptosis was evaluated using the Apo-One

Homogenous Caspase32/7 kit (Promega). Each experiment was

performed in six replicas and was repeated twice. MCA-38 murine

colon cancer cells were obtained from Dr Nicholas P. Restifo

(National Cancer Institute) and cultured in RPMI 1640 media

supplemented with 10% fetal calf serum and 1% antibiotic/

antimycotic (Invitrogen).

Western Blot Analysis
NCM460 non-transformed human colonic epithelial cells stably

expressing MCHR1 (NCM460/MCHR1) were maintained in

M3D media (INCELL) supplemented with 10% fetal bovine

serum and 1% antibiotic/antimycotic (Invitrogen). At 80%

confluence, cells were serum starved for 16 hrs and then treated

with MCH (2.4 mg/ml) for the indicated time points. Cells were

harvested in 36 SDS sample buffer (Cell Signalling Technology)

and protein concentration in the cell lysates was determined using

the DC protein assay (Biorad). Thirty microgram of cell extracts

were separated by SDS-PAGE and transferred to a PVDF

membrane (Millipore). After blocking, membranes were incubated

with anti-phospho erk1/2 ((Thr202/Tyr204)(Cell Signaling Tech-

nology) antibody or anti-GAPDH antibody (Santa Cruz Bio-

technology) overnight at 4uC, followed by incubation with

a peroxidase labeled secondary antibody (Santa Cruz Biotechnol-

ogy). Specific bands were visualized in film after incubation with

the SuperSignal West Pico chemiluminescent substrate (Pierce).

Statistical Analysis
Results are expressed as group mean +/2 SEM. Data were

analyzed by StatView, using unpaired t-test, ANOVA factorial

followed by Fisher’s PLSD analysis for multiple comparisons or

a chi-square test where appropriate. A level of p,0.05 was

considered statistically significant.

Results

MCHR1 is Expressed by Intestinal Epithelial Cells, Colonic
Adenocarcinoma and Intestinal Crypt Stem Cells
In humans, we detected expression of MCHR1 in normal

colonic epithelial cells as well as in colonic adenocarcinoma cells

(fig 1A). Furthermore, according to the Human Protein Atlas

project, among the 11 colorectal cancer samples examined, 7

showed strong MCHR1 staining of tumor cells and the remaining

a moderate staining (http://www.proteinatlas.org/

ENSG00000128285/cancer/colorectal+cancer). Likewise,

MCHR1 was expressed in the normal mouse intestinal epithelium

as well as in tumors developed in the APCmin mice (fig 1B).

MCHR1 expression was also detected in a human (Caco2) and

mouse (MCA-38) colon cancer cell line by immunofluorescence

(fig 1, lower panels) as well as by RT-PCR (data not shown).

It has been suggested that intestinal adenomas arise from

undifferentiated crypt base stem cells [20]. We thus investigated

whether these stem cells are also MCHR1 positive. Intestinal crypt

stem cells were labeled using a transgenic mouse that expresses

eGFP under the LGR5 promoter as previously described [20].

Using an antibody against MCHR1, we demonstrated colocaliza-

tion of MCH-R1 (red) with GFP-labeled LGR5- positive (green)

intestinal stem cells (fig 2).

MCH Promotes Survival of Colon Adenocarcinoma Cells
by Inhibiting Apoptosis
Because we had detected MCHR1 in human carcinomas, we

next measured the in vitro effects of MCH on Caco2 cells.

Treatment of these cells with MCH for 48 hours substantially

increased cell viability as determined by the MTT dye conversion

assay (10067.2 vs 140.668.4, vehicle vs MCH treatment,

respectively, p = 0.0029; fig 3A). Two potential mechanisms may

account for this observation, namely increased cell proliferation or

inhibition of cell death. Indeed, MCH had a strong effect on

inhibiting apoptosis in these cells (10064.9 vs 67.662.5, vehicle

versus MCH treatment, respectively; p= 0.0004; fig 3B). Under

the experimental conditions tested, MCH was not found to

independently increase cell proliferation. However, MCH in

combination with IGF-1 significantly enhanced cell proliferation

(127.6+5.9 vs 166.4+11.8; IGF-1 vs IGF-1/MCH, respectively,

p = 0.0026; fig 3C). We can therefore speculate that IGF-1 and

other growth factors released in the in vivo situation may synergize

with MCH to add to their pro-proliferative effect. Treatment with

MCH also increased cell survival by inhibiting apoptosis in HT-29

human colon adenocarcinoma cells and in MCA-38 murine colon

carcinoma cells (data not shown).

It has been previously demonstrated that signaling via MCHR1

activates erk1/2 in HEK293 cells stably expressing MCHR1 and

in 3T3L1 preadipocytes [21,22]. To test whether MCH had

similar effects in colonic epithelial cells, we used a non-

transformed human colonic cell line (NCM460). In these cells

endogenous MCHR1 expression at baseline is very low, but it can

be significantly upregulated in response to inflammation [6]. Thus

these cells were stably transfected with human MCHR1

(NCM460/MCHR1), which resulted in a 5–10 fold increase in

MCHR1 expression levels. Indeed, treatment of NCM460/

MCHR1 cells with MCH induced erk1/2 phosphorylation in

a time-dependent manner (fig. 3D).

MCH-deficiency Protects APCmin Mice Against Intestinal
Adenoma Development and Progression
To determine the in vivo role of MCH in colorectal cancer, we

evaluated spontaneous tumor development in WT (n= 15) and

MCH-KO (n= 18) mice of the APCmin genetic background. As

shown in fig 4A, WT mice started losing weight around 12 weeks

of age, whereas MCH-KO mice continued to gain weight

(p = 0.0355 at sacrifice; fig 4A). At 14 weeks of age, MCH-KO

mice had significantly fewer tumors in their small intestine than

WT mice (51.064.9 vs. 76.8767.4 tumors per mouse, re-

spectively; p = 0.0054, fig 4B). Differences in the number of

tumors between genotypes were most pronounced in the medial

(16.8361.91 vs. 27.8763.6 tumors per mouse; p = 0.0081) and

distal (27.0662.77 vs. 40.8364.55 tumors per mouse; p = 0.0122)

segments of the small intestine (fig 4C). Moreover, MCH-KO mice

had smaller lesions than WT mice, especially in the groups of

larger polyps (fig 4D). Supporting the macroscopic analysis at

sacrifice, histologic analysis of small intestinal adenomas in the

medial and distal segments of the small intestine confirmed the

macroscopic results. Importantly, the number of high-grade

adenomas was significantly lower in MCH-KO mice compared

to WT mice (14.4462.19 vs. 23.5363.46, respectively; p = 0.0289;

fig 4E and 4F).

MCH and Intestinal Tumorigenesis
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MCH-deficiency is Associated with Increased Apoptosis
in Intestinal Adenomas
There are several potential mechanisms by which MCH could

influence tumor development in the APCmin mice. The fact that

MCH-KO mice developed fewer and smaller adenomas prompted

us to examine the effects of MCH on pathways regulating cell

growth and survival. Indeed, TUNEL analysis revealed that

intestinal adenomas developed in MCH deficient mice had 5-fold

as many apoptotic cells compared to WT mice (0.09260.28 vs

0.45860.117; MCH-KO vs WT, respectively; p = 0.021; fig 5A).

These results are consistent with our in vitro findings of MCH

increasing cell apoptosis in Caco2 colonic adenocarcinoma cells

(fig 3C).

Furthermore, there was a trend of reduced cell proliferation in

the adenomas developed in the MCH-KO mice, as revealed by

Ki67 staining (77.262.2 vs 82.161.9; MCH-KO vs WT, re-

spectively; p = 0.12; fig 5B), again consistent with our in vitro

studies (fig 3D).

Figure 1. MCHR1 expression in normal colonic epithelial cells and colon adenocarcinoma. (A) In human colonic biopsies, normal
epithelium as well as adenocarcinoma cells were positive for MCHR1 staining. Moreover, Caco2 cells, a human colon adenocarcinoma cell line,
showed MCHR1 immunoreactivity. (B) Likewise, MCHR1 was found to be expressed by mouse intestinal epithelial cells, intestinal tumors developed in
APCmin mice and the MCA-38 murine colon cancer cell line. Incubation with pre-immune serum was used as a negative control.
doi:10.1371/journal.pone.0041914.g001

Figure 2. MCHR1 is expressed in LGR5 positive intestinal stem cells. For this experiment we used Lgr5-EGFP-IRES-creERT2 knock-in mice in
which expression of EGFP was under the endogenous lgr5 promoter. Colonic biopsies from the above mice were stained with an anti-MCH antibody
and co-localization (yellow) of MCHR1 (red) and LGR5 (green) was detected under a fluorescent microscope.
doi:10.1371/journal.pone.0041914.g002

MCH and Intestinal Tumorigenesis
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Attenuated Activation of the wnt/beta-catenin and erk1/
2 Signaling Pathways in APCmin Mice Lacking MCH
Nuclear accumulation of beta-catenin and expression of its

downstream target c-myc [14], were determined by immunohis-

tochemistry, and were found to be more pronounced in the WT

mice compared to MCH-KO mice. Specifically, in the WT mice,

on average 85.961.2% of cells per adenoma showed nuclear

accumulation of beta-catenin, while only 42.363.3% in MCH-

KO mice (p,0.0001, fig 6A). This difference was apparent in

adenomas, but not the surrounding normal tissue. In line with this

finding, 71.961.7% of cells in adenomas from WT mice expressed

c-myc but only 58.363.7% in MCH-KOmice (p= 0.0011, fig 6B).

A recent report indicates that p-erk1/2 plays a critical role in

stabilizing c-myc and promoting tumorigenesis through decreased

apoptosis and increased proliferation [23]. Hence, we examined

by immunohistochemistry erk1/2 phosphorylation in tumors from

WT and MCH-KO mice. In WT mice, the majority of tumors

had strong nuclear staining for p-erk within small parts of the

adenoma, whereas MCH-KO mice often lacked p-erk1/2 staining

or showed very few cells with nuclear staining in an adenoma

(p = 0.0472, fig 6C). These results are consistent with the direct

activation of erk1/2 in colonocytes in response to MCH treatment,

as shown in fig. 3D.

MCH-deficiency Attenuates DSS-induced Colorectal
Tumor Development in APCmin Mice
In the presence of dextran sodium sulphate (DSS), an irritant

that causes colonic inflammation, APCmin mice develop in a short

period of time multiple colonic neoplasms [19]. We induced colitis

in six-week-old MCH-KO mice and their WT littermates by

treating them with DSS for 7 consecutive days. Colonic tumor

development was evaluated when mice were 11 weeks of age. At

this point, and compared to their initial body weight, WT mice lost

slightly more weight compared to MCH-KO mice (110.5261.79

vs. 102.2562.19% respectively, p = 0.0132; fig 7A). The majority

of WT mice showed multiple individual lesions with clustering in

the middle of the colon and near the rectum. In these mice, the

rectal tumors were so dense and big that they became

indistinguishable from one another (fig 7B). However, only a few

of the MCH-KO mice developed confluent rectal tumors (23/32

vs. 4/24, respectively, p = 0.00004; fig 7C). Moreover, in those

MCH-KO mice with confluent rectal tumors, the length of the

tumor occupied area was shorter than in WT mice

Figure 3. MCH increases cell viability in vitro by suppressing apoptosis. Caco2 human colonic adenocarcinoma cells were serum starved
overnight (2% FBS) and treated for 48 hrs with MCH (2.4 mg/ml). (A) Cell viability was measured using the MTT assay. Treatment with 20% FBS served
as a positive control. (B) Cell apoptosis was measured by the Apo-One Homogenous Caspase32/7 assay. (C) Cells were treated with MCH (2.4 mg/ml),
IGF-1 (10 nM) or their combination and cell proliferation was assessed by measuring BrdU incorporation using a colorimetric assay. Results are
expressed relatively to vehicle treated cells (100). Graphs depict mean6sem of 6 replicates and are representative of 2 independent experiments.
***p,0.005; ****p,0.001 (D) NCM460 non-transformed human colonic epithelial cells stably expressing human MCHR1 (NCM460/MCHR1) were
treated with MCH and erk1/2 phosphorylation at different time points was analyzed by western blot. Expression of GAPDH serves as a control for
equal loading.
doi:10.1371/journal.pone.0041914.g003

MCH and Intestinal Tumorigenesis
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Figure 4. Reduced incidence and size of intestinal adenomas in APCmin mice lacking MCH. Mice of a compound genotype were
generated, and were wild type (WT; n = 15) or deficient for MCH (MCH-KO; n = 18), all in the APCmin genetic background. At 14 weeks of age, mice
were sacrificed and intestinal tumors were evaluated macroscopically and by histology. (A) Changes in body weight were expressed as % of body
weight at 6 weeks of age. (B) Incidence of intestinal tumors in WT and MCH-KO mice. Horizontal bars represent the mean number of tumors per
genotype. (C) Incidence of adenomas according to their location in the small intestine. (D) Distribution of intestinal tumors in WT and MCH-KO mice
according to their diameter. (E) Representative H&E stained sections of a high grade adenoma in a WT mouse, and a low grade adenoma in a MCH-KO
mouse. (F) Incidence of low and high grade adenomas in WT and MCH-KO mice as evaluated in H&E stained sections by a pathologist (RMN).
*p,0.05; **p,0.01.
doi:10.1371/journal.pone.0041914.g004
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(1.1560.58 mm vs. 5.3460.68 mm; p,0.0001; fig 7D). Since no

individual tumors could be clearly distinguished in some of the

cases, the percentage of colon covered by adenomas was

evaluated. MCH-deficient APCmin mice had a significant in-

crease in tumor-free area in their colon, compared to their wild-

type littermates (73.54611.27% vs. 58.7564.81%, respectively,

p = 0.0077; fig 7E). Histologically, all adenomas showed high-

grade dysplasia, but no invasive carcinoma was detected in either

group. Furthermore, the adenomas from both groups showed mild

infiltration of inflammatory cells, but no active colitis was detected.

Thus, we found no indication of differences in the resolution of

colitis between MCH-KO and WT mice at sacrifice. Additionally,

at this time point, no differences in tumor development between

WT and MCH-KO mice were apparent in the small intestine.

Discussion

The role of MCH beyond the central nervous system has not yet

been fully investigated. Studies from our group and others have

identified the intestine as a significant source of MCH as well as

a target site for its actions [3,5,6]. In the present study, using

a compound genetic model of spontaneous intestinal tumorigen-

esis, we describe for the first time that mice lacking MCH in the

APCmin genetic background, develop fewer and smaller adeno-

mas in their intestine and colon. The significance of this

observation is corroborated by our observation of MCH receptor

positive human colonic adenocarcinomas.

One intriguing and unexpected finding in the present study is

the demonstration of MCHR1 expression in LGR5-positive crypt

stem cells, which are considered to play a key role in the

development of intestinal tumors [20]. The implications of this

observation remain to be seen. In particular for the APC model, it

has been shown that deletion of APC specifically in LGR5-positive

cells is sufficient to give rise to adenomas within 3–5 weeks. In

contrast, deletion of APC in short lived transit amplifying cells

does not promote tumorigenesis [20].

Overall, our analysis of tumor development in APCmin mice

lacking MCH suggests that MCH ablation affects primarily tumor

growth rather than tumor formation. Several points of evidence

support this conclusion. The most pronounced difference in tumor

development in the MCH-KO mice was a reduction in the

number of larger adenomas, whereas the number of small tumors

remained comparable between the MCH-KO and WT mice as

shown in fig. 4D. Furthermore, only the number of high-grade

adenomas was lower in the MCH-KO mice (fig. 4F). These

observations are consistent with a direct role for MCH in

promoting cell survival, as our in vitro studies also indicate

(fig. 3). Indeed, this is the first report demonstrating that MCH

directly inhibits cell apoptosis. The exact signaling pathways

leading to this effect need to be further elucidated. However,

a previous study from our group has demonstrated increased levels

of the tumor suppressor p53 in the liver and spleen of MCH

knockout mice [24], which is consistent with the reduced size of

adenomas in the MCH deficient mice reported in the current

study. Moreover, it has previously been shown that in APCmin

mice, deficiency of p53 enhances the number and invasiveness of

the intestinal tumors [25].

We also report here that adenomas developed in MCH-

deficient mice had lower expression of c-myc, compared to wild-

type mice, most likely due to reduced activation of the wnt/beta-

Figure 5. Increased apoptosis in intestinal adenomas developed in MCH-deficient APCmin mice. Paraffin sections of intestinal adenomas
from WT and MCH-KO mice, both of the APCmin background, were stained for (A) TUNEL, a marker of apoptosis; and (B) Ki67, a marker of
proliferation. Quantification of differences between the groups (percentage of positive cells per adenoma) is shown in graphs on the right of each
picture. *p,0.05.
doi:10.1371/journal.pone.0041914.g005
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catenin pathway. C-myc is an oncogene that plays a critical role in

the early stages of carcinogenesis following inactivation of APC.

Besides transcriptional upregulation of c-myc by beta-catenin, it

has been shown that c-myc deficiency can rescue the phenotype of

mice with APC loss, even in the presence of high levels of nuclear

beta-catenin [15]. Moreover, a recent study underscores the role

of erk signaling in the APCmin model of intestinal tumorigenesis

by demonstrating that erk can phosphorylate and stabilize c-myc,

thus preventing its ubiquitination and proteasomal degradation

[23]. Indeed, it has been previously shown in different cell types

that activation of MCHR1 results in erk1/2 phosphorylation

[21,22].

Previous studies have shown that MCH can act in combination

with additional factors, for example forskolin or isoproterenol, to

synergistically activate erk [21]. This might explain why in our in

vitro experiments we were able to detect an MCH-mediated

increase in cell proliferation only in the presence of IGF-1. The

significance of this observation is underscored by epidemiologic

and experimental evidence suggesting that IGF-1 signaling is

critical in the pathogenesis of intestinal carcinogenesis [26]. It has

been suggested that one of the mechanisms by which IGF-1

contributes to cell transformation is the phosphorylation of beta-

catenin [27]. As such, agents targeting IGF-1 are currently under

development for the treatment of colorectal cancer [28], and

perhaps could be used in combination with anti-MCH treatments.

From a mechanistic point of view, this report has focused on the

role of MCH on colonic epithelial cells. However, additional cell

types might mediate the effects of MCH in tumorigenesis. For

instance, the presence of MCHR1 on monocytes and T-cells has

been previously recognized, though the biological significance of

such findings remains elusive [29]. Interestingly, in activated

lymphocytes, MCH appears to inhibit cell proliferation [29,30].

MCH is also produced by human microvascular endothelial cells,

which might be of importance in tumor angiogenesis [31].

The concept of gut neuropeptides and hormones like MCH,

modulating carcinogenesis does not appear to be unique for

MCH. It has been previously shown that, like MCH, gastrin-

deficient APCmin mice exhibited significant decrease in the

number and proliferative capacity of intestinal adenomas [32]. On

the other hand, neuropeptides known to regulate cell growth,

differentiation and survival, like GLP-2, do not necessarily modify

intestinal tumor growth [33].

Figure 6. Attenuated activation of the wnt/beta-catenin and ERK signaling pathways in APCmin mice lacking MCH. Paraffin sections
of intestinal adenomas from WT and MCH KO mice, both of the APCmin background, were stained for (A) beta-catenin, a downstream effector of the
wnt signaling pathway; (B) c-myc, a target of beta-catenin; and (C) p-erk. Quantification of differences between the groups (percentage of positive
cells per adenoma) is shown in graphs on the right of each picture. Results are expressed as mean6sem. ***p,0.005; ****p,0.001.
doi:10.1371/journal.pone.0041914.g006
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Often, chronic inflammation predisposes to cancer development

via multiple mechanisms [34] and epidemiological evidence

suggests that patients with inflammatory bowel disease (IBD) are

at increased risk for colorectal cancer. A recent report estimated

that incidence rates of cancer in patients with IBD was 75 per

100,000 person years compared to 47 per 100,000 person-years in

patients without IBD [35]. Notably, in patients with IBD we have

found a significant upregulation of MCH and its receptor, which

correlated positively with the severity of the disease [5]. In this

context, MCH not only promotes intestinal inflammation as we

have previously demonstrated [5,6], which is a predisposing factor

for tumorigenesis, but also, based on the present study, it

contributes to intestinal tumor growth independently of inflam-

mation. Combined, these properties render MCH an attractive

target for the treatment of inflammatory bowel disease, which will

also reduce the risk of subsequent cancer development. Indeed,

during the last decade there is an ongoing investigation by many

pharmaceutical companies on MCH antagonists, primarily for the

treatment of obesity [1]. The fields of IBD and cancer therapeutics

are likely to benefit in the foreseeable future by taking advantage

of this momentum.
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