10,407 research outputs found

    Stability Properties of the Time Domain Electric Field Integral Equation Using a Separable Approximation for the Convolution with the Retarded Potential

    Full text link
    The state of art of time domain integral equation (TDIE) solvers has grown by leaps and bounds over the past decade. During this time, advances have been made in (i) the development of accelerators that can be retrofitted with these solvers and (ii) understanding the stability properties of the electric field integral equation. As is well known, time domain electric field integral equation solvers have been notoriously difficult to stabilize. Research into methods for understanding and prescribing remedies have been on the uptick. The most recent of these efforts are (i) Lubich quadrature and (ii) exact integration. In this paper, we re-examine the solution to this equation using (i) the undifferentiated form of the TD-EFIE and (ii) a separable approximation to the spatio-temporal convolution. The proposed scheme can be constructed such that the spatial integrand over the source and observer domains is smooth and integrable. As several numerical results will demonstrate, the proposed scheme yields stable results for long simulation times and a variety of targets, both of which have proven extremely challenging in the past.Comment: 9 pages, 13 figures. To be published in IEEE Transactions on Antennas and Propagatio

    Predictive haemodynamics in a one-dimensional human carotid artery bifurcation. Part II: application to graft design

    No full text
    A Bayesian surrogate modelling technique is proposed that may be able to predict an optimal bypass graft configuration for patients suffering with stenosis in the internal carotid artery (ICA). At the outset, this statistical technique is considered as a means for identifying key geometric parameters influencing haemodynamics in the human carotid bifurcation. This methodology uses a design of experiments (DoE) technique to generate candidate geometries for flow analysis. A pulsatile one dimensional Navier-Stokes solver incorporating fluid-wall interactions for a Newtonian fluid which predicts pressure and flow in the carotid bifurcation (comprising a stenosed segment in the internal carotid artery) is used for the numerical simulations. Two metrics, pressure variation factor (PVF) and maximum pressure (pm) are employed to directly compare the global and local effects, respectively, of variations in the geometry. The values of PVF and pm are then used to construct two Bayesian surrogate models. These models are statistically analysed to visualise how each geometric parameter influences PVF and pm. Percentage of stenosis is found to influence these pressure based metrics more than any other geometric parameter. Later, we identify bypass grafts with optimal geometric and material properties which have low values of PVF on five test cases with 70%, 75%, 80%, 85% and 90% stenosis in the ICA, respectively

    Ion beam induced enhanced diffusion from gold thin films in silicon

    Full text link
    Enhanced diffusion of gold atoms into silicon substrate has been studied in Au thin films of various thicknesses (2.0, 5.3, 10.9 and 27.5 nm) deposited on Si(111) and followed by irradiation with 1.5 MeV Au2+ at a flux of 6.3x10^12 ions cm-2 s-1 and fluence up to 1x10^15 ions cm-2. The high resolution transmission electron microscopy measurements showed the presence of gold silicide formation for the above-mentioned systems at fluence greater than equal to 1x1014 ions cm-2. The maximum depth to which the gold atoms have been diffused at a fluence of 1x10^14 ions cm-2 for the cases of 2.0, 5.3, 10.9 and 27.5 nm thick films has been found to be 60, 95, 160 and 13 nm respectively. Interestingly, at higher fluence of 1x1015 ions cm-2 in case of 27.5 nm thick film, gold atoms from the film transported to a maximum depth of 265 nm in the substrate. The substrate silicon is found to be amorphous at the above fluence values where unusually large mass transport occurred. Enhanced diffusion has been explained on the basis of ion beam induced, flux dependent amorphous nature of the substrate, and transient beam induced temperature effects. This work confirms the absence of confinement effects that arise from spatially confined structures and existence of thermal and chemical reactions during ion irradiation.Comment: 15 pages, 3 figure

    Tailoring of Energy Band Gap inGraphene-like System by Fluorination

    Get PDF
    Fluorinated grapheme has a two-dimensional layer structure with a wide band gap. In the present study, Fluoro Graphene (FG) is obtained from Graphene Oxide (GO) through a deoxyfluorination reaction with the aid of Diethylaminosulphurtrifluoride (DAST). The FT-IR exhibited a peak at 1216 cm-1 and the shoulder at 1312 cm-1 were ascribed to the stretching vibration of covalent C–F bonds and C–F2 bonds, respectively. Surface morphology revealed a leafy structure in GO and a rocky structure in FG. The EDS analysis confirmed the fluorination of the graphitic structure. The TEM analysis confirmed the formation of a mixed structure of graphene and carbon dots. The results of structural, morphological and electrical properties of both graphene oxide and fluorographene show the possibility of using these samples as electronic/electrochemical devices in future

    On some eel eggs and larvae from the Gulf of Manaar

    Get PDF
    Though much attention has been devoted to the elucidation of the biology of the eels, the records of their eggs are very rew and, st rangely enough, even the egg of the European eel, Anguilla vulgaris, which was the subject of intensive investigation, remains unknown to Science. The first account of eel eggs was by Raffaele (1888) who studied the early development of five types of unidentified eggs from the Bay of Naples

    On the occurrence of sting-ray spines in the jaws and gills of the hammerhead shark Sphyrna zygaena (Linnaeus)

    Get PDF
    It is well-known that sharks ate voracious feeders and prey upon a wide variety of marine animals such as planktonic crustaceans, crabs, molluscs, fishes, turtles and seals. White examining a specimen of Sphyrnra zygaena (Linnaeus) measuring 3'86 metres in total length (Photo I) which was caught off Tuticorin at 40 fathoms depth by long line on 22nd April, 1971, several spines of sting-rays were found in the ja\vs and gills (Photo 2). The spines occurred in ooth jaws of S. 'Zygaena but most of them were found in the upper jaw and they were observed to have pierced the jaws and gills deeply

    Ultrastructure of the epithelial cells and oleo-gumresin secretion in Boswellia serrata (Burseraceae)

    Get PDF
    The ultrastructure of epithelial cells of oleo-gumresin ducts in Boswellia serrata, the source of Indian olibanum, is described. Oleo-gumresin ducts are present in primary and secondary phloem. The duct lumen forms an enlarged apoplastic space surrounded by epithelial cells. The epithelial cells are rich in dictyosomes, lipid bodies, mitochondria with dilated cristae, multivesicular bodies, osmiophilic materials, plastids and vesicIes. Plastids have poorly developed internal membranes. Dictyosomes and plastids are possible sites of resin synthesis. The gum component of the exudate is formed in dictyosomes and from the outer layers of the inner tangential wall (wall facing the duct lumen). This wall is replenished from inside by the activity of dictyosomes. The secretory materials are transported to the apoplast by granulocrine and eccrine secretion. They migrate through the loose microfibrils of the inner tangential wall into the duct lumen. Rarely, epithelial cells of young ducts have rudimentary plasmodesmata on the inner tangential wall which may be channels for passage of secretory materials into the duct lumen
    corecore