1,140 research outputs found

    Inactivation of staphylococcal virulence factors using a light-activated antimicrobial agent

    Get PDF
    Background: One of the limitations of antibiotic therapy is that even after successful killing of the infecting microorganism, virulence factors may still be present and cause significant damage to the host. Light-activated antimicrobials show potential for the treatment of topical infections; therefore if these agents can also inactivate microbial virulence factors, this would represent an advantage over conventional antibiotic therapy. Staphylococcus aureus produces a wide range of virulence factors that contribute to its success as a pathogen by facilitating colonisation and destruction of host tissues.Results: In this study, the ability of the light-activated antimicrobial agent methylene blue in combination with laser light of 665 nm to inactivate staphylococcal virulence factors was assessed. A number of proteinaceous virulence factors were exposed to laser light in the presence of methylene blue and their biological activities re-determined. The activities of V8 protease, alpha-haemolysin and sphingomyelinase were shown to be inhibited in a dose-dependent manner by exposure to laser light in the presence of methylene blue.Conclusion: These results suggest that photodynamic therapy could reduce the harmful impact of preformed virulence factors on the host

    The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization

    Get PDF
    Objectives: It has been demonstrated that the efficiency of lethal photosensitization can be improved by covalently binding photosensitizing agents to bacteriophage. In this study we have investigated whether a bacteriophage requires the capacity to infect the bacterium to enhance lethal photosensitization when linked to a photosensitizer.Methods: Tin (IV) chlorin e6 (SnCe6) was conjugated to bacteriophage Phi 11, a transducing phage that can infect Staphylococcus aureus NCTC 8325-4, but not epidemic methicillin-resistant S. aureus (EMRSA)-16. The conjugate and appropriate controls were incubated with these bacteria and either exposed to laser light at 632.8 nm or kept in the dark.Results: The SnCe6/Phi 11 conjugate achieved a statistically significant reduction in the number of viable bacteria of both 8325-4 and EMRSA-16 strains by 2.31 log(10) and 2.63 log(10), respectively. The conjugate could not however instigate lethal photosensitization of Escherichia coli. None of the other combinations of controls, such as an equivalent concentration of SnCe6 only, an equivalent titre of bacteriophage only or experiments conducted without laser light, yielded significant reductions in the number of viable bacteria recovered.Conclusions: The inability of a bacteriophage to infect S. aureus does not prevent it from specifically delivering a photosensitizer to a bacterium enabling its lethal photosensitization

    Antibacterial properties of Cu-ZrO2 thin films prepared via aerosol assisted chemical vapour deposition

    Get PDF
    © 2015 The Royal Society of Chemistry. The antibacterial properties of a Cu-ZrO2 film grown via aerosol assisted chemical vapour deposition are presented. The composite film showed high activity against E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria with 5 log10 (E. coli) and 4 log10 (S. aureus) decrease in viable bacteria achieved within 20 and 60 minutes respectively. These results were comparable to a pure copper film that was prepared under the same conditions. The composite film was characterized for material properties using a range of techniques including X-ray photoemission and X-ray diffraction

    Bicarbonate induces high-level resistance to the human antimicrobial peptide LL-37 in Staphylococcus aureus small colony variants

    Get PDF
    Objectives: Staphylococcus aureus small colony variants (SCVs) cause persistent infections and are resistant to cationic antibiotics. Antimicrobial peptides (AMPs) have been suggested as promising alternatives for treating antibiotic-resistant bacteria. We investigated the capacity of the human cationic AMP LL-37 to kill SCVs in the presence of physiological concentrations of bicarbonate, which are reported to alter bacterial membrane permeability and change resistance of bacteria to AMPs. Methods: MBCs of LL-37 for S. aureus SCVs with mutations in different genes in the presence and absence of bicarbonate were determined. Results: In the absence of bicarbonate, SCVs of S. aureus strains LS-1 and 8325-4 had the same level of resistance to LL-37 as the parental strain (8 mg/L). In the presence of bicarbonate, hemB, menD and aroD SCVs of LS-1 had high-level resistance to LL-37 (≥128 mg/L) compared with the parental strain (16 mg/L). However, only the aroD SCV of strain 8324-5 showed high-level resistance. 8325-4 harbours mutations in two genes, tcaR and rsbU, which are involved in antimicrobial sensing and the stress response, respectively. When rsbU was repaired in 8325-4 it displayed high-level resistance to LL-37 in the presence of bicarbonate. This phenotype was lost when tcaR was also repaired, demonstrating that RsbU and TcaR are involved in LL-37 resistance in the presence of bicarbonate. Conclusions: S. aureus SCVs would be resistant to high concentrations of LL-37 in niches where there are physiological concentrations of bicarbonate and therefore this AMP may not be effective in combating SCVs

    Photodynamic inactivation of Candida albicans by hematoporphyrin monomethyl ether

    Get PDF
    AIM: To evaluate the capacity of hematoporphyrin monomethyl ether (HMME) in the presence of light to cause photodynamic inactivation (PDI) of Candida albicans. MATERIALS & METHODS: HMME photoactivity was evaluated against azole-susceptible and -resistant C. albicans. The mechanisms by which PDI of C. albicans occurred were also investigated. RESULTS: HMME-mediated PACT caused a dose-dependent inactivation of azole-susceptible and -resistant C. albicans. Incubation with 10 ÎĽM HMME and irradiation with 72 J cm(-2) light decreased the viability of C. albicans by 7 log10, induced damage of genomic DNA, led to loss of cellular proteins and damaged the cell wall, membrane and intracellular targets. CONCLUSION: Candida albicans can be effectively inactivated by HMME in the presence of light, and HMME-mediated PACT shows its potential as an antifungal treatment

    Light activated antimicrobial agents can inactivate oral malodour causing bacteria.

    Get PDF
    Oral malodour is a common condition which affects a large proportion of the population, resulting in social, emotional and psychological stress. Certain oral bacteria form a coating called a biofilm on the tongue dorsum and degrade organic compounds releasing volatile sulfur compounds that are malodourous. Current chemical treatments for oral malodour such as mouthwashes containing chlorhexidine or essential oils, are not sufficiently effective at reducing the bacterial load on the tongue. One potential alternative to current chemical treatments for oral malodour is the use of light activated antimicrobial agents (LAAAs), which display no toxicity or antimicrobial activity in the dark, but when exposed to light of a specific wavelength produce reactive oxygen species which induce damage to target cells in a process known as photodynamic inactivation. This study aimed to determine whether oral malodour causing bacteria were susceptible to lethal photosensitization. Five bacterial species that are causative agents of oral malodour were highly sensitive to lethal photosensitization and were efficiently killed by methylene blue in conjunction with 665 nm laser light. Between 4.5-5 log10 reductions in the number of viable bacteria were achieved with 20 µM methylene blue and 14.53 J cm(-2) laser light for Porphyromonas gingivalis, Prevotella intermedia, Peptostreptococcus anaerobius and Solobacterium moorei. The number of viable cells fell below the limit of detection in the case of Fusobacterium nucleatum. These findings demonstrate that methylene blue in combination with 665 nm laser light is effective at killing bacteria associated with oral malodour, suggesting photodynamic therapy could be a viable treatment option for oral malodour

    Crystal Violet-Impregnated Slippery Surface to Prevent Bacterial Contamination of Surfaces

    Get PDF
    Biofilms which are self-organized communities can contaminate various infrastructural systems. Preventing bacterial adhesion on surfaces is more desirable than cleaning or disinfection of bacteria-contaminated surfaces. In this study, a 24 h bacterial adhesion test showed that “slippery surfaces” had increased resistance to bacterial contamination compared to polydimethylsiloxane and superhydrophobic surfaces. However, it did not completely inhibit bacterial attachment, indicating that it only retards surface contamination by bacteria. Hence, a strategy of killing bacteria with minimal bacterial adhesion was developed. A crystal violet-impregnated slippery (CVIS) surface with bactericidal and slippery features was produced through a simple dipping process. The CVIS surface had a very smooth and lubricated surface that was highly repellent to water and blood contamination. Bactericidal tests against Escherichia coli and Staphylococcus aureus showed that the CVIS surface exhibited bactericidal activity in dark and also showed significantly enhanced bactericidal activity (>3 log reduction in bacteria number) in white light

    Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester

    Get PDF
    The treatment of Klebsiella pneumoniae, particularly extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae, is currently a great challenge. Photodynamic antimicrobial chemotherapy is a promising approach for killing antibiotic-resistant bacteria. The aim of this study was to evaluate the capacity of 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL) in the presence of white light to cause photodynamic inactivation (PDI) of K. pneumoniae planktonic and biofilm cells. In the presence of white light, 5-ALA and MAL inactivated planktonic cells in a concentration-dependent manner. Biofilms were also sensitive to 5-ALA and MAL-mediated PDI. The mechanisms by which 5-ALA and MAL caused PDI of ESBL-producing K. pneumonia were also investigated. Exposure of K. pneumonia to light in the presence of either 5-ALA or MAL induced cleavage of genomic DNA and the rapid release of intracellular biopolymers. Intensely denatured cytoplasmic contents and aggregated ribosomes were also detected by transmission electron microscopy. Scanning electron microscopy showed that PDI of biofilms caused aggregated bacteria to detach and that the bacterial cell envelope was damaged. This study provides insights into 5-ALA and MAL-mediated PDI of ESBL-producing K. pneumoniae

    Zn and N codoped TiO2 thin films: photocatalytic and bactericidal activity.

    Get PDF
    We explore a series of Zn and N codoped TiO2 thin films grown using chemical vapor deposition. Films were prepared with various concentrations of Zn (0.4-2.9 at. % Zn vs Ti), and their impact on superoxide formation, photocatalytic activity, and bactericidal properties were determined. Superoxide (O2•-) formation was assessed using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium sodium salt (XTT) as an indicator, photocatalytic activity was determined from the degradation of stearic acid under UVA light, and bactericidal activity was assessed using a Gram-negative bacterium E. coli under both UVA and fluorescent light (similar to what is found in a clinical environment). The 0.4% Zn,N:TiO2 thin film demonstrated the highest formal quantum efficiency in degrading stearic acid (3.3 × 10-5 molecules·photon-1), while the 1.0% Zn,N:TiO2 film showed the highest bactericidal activity under both UVA and fluorescent light conditions (>3 log kill). The enhanced efficiency of the films was correlated with increased charge carrier lifetime, supported by transient absorption spectroscopy (TAS) measurements

    Thyroid status in pregnant women with pregnancy induced hypertension – A case control study

    Get PDF
    Introduction: Pregnancy induced hypertension (PIH) is an important cause of maternal and fetal morbidity and mortality affecting 5-10% of pregnancies. PIH is more frequently associated with elevated TSH (Thyroid-stimulating hormone). Thyroid dysfunction plays an important role in the development of gestational hypertension. However, this relationship remains unclear. The study was performed to evaluate the thyroid status in pregnant women with PIH and normal pregnant women. Methodology: This was a hospital based observational case control study done in Dr M K Shah Medical College, Ahmedabad. Total 100 pregnant women were included, out of them 50 PIH women were included in the case study group and 50 normotensive healthy pregnant women were included in the control group. After taking written consent, thyroid profile (TSH, free T3 and free T4) were measured in all 100 subjects. Results: Women with PIH had higher TSH levels and lower free T3 and free T4 as compared to normotensive pregnant women. There was a significant association between hypothyroidism and PIH cases. There was a significant positive correlation between TSH and systolic BP (r=0.42) and diastolic BP (r=0.52). Conclusion: PIH women are at greater risk of decreased thyroid function. Therefore, PIH women should be monitored for thyroid levels regularly
    • …
    corecore