10,845 research outputs found

    Dissociative electron attachment to formamide

    Get PDF
    Formamide (HCONH2) is the smallest molecule with a peptide bond and has recently been observed in the interstellar medium (ISM), suggesting that it may be ubiquitous in star-forming regions. There is therefore considerable interest in the mechanisms by which this molecule may form. One method is electron induced chemistry within the icy mantles on the surface of dust grains. In particular it has been recently shown that functional group dependence exists in electron attachment processes giving rise to site selective fragmentation of molecules at the C-H, O-H and N-H bonds at energies well beyond the threshold for the breaking of any of these bonds allowing novel forms of chemistry that have little or no activation barriers, such as are necessary in the ISM. In this poster we present the results of resent studies on dissociative electron attachment (DEA) to formamide DEA using an improved version of a Velocity Map Imaging (VMI) spectrometer comprised of a magnetically collimated and low energy pulsed electron gun, a Faraday cup (to measure the incident current), an effusive molecular beam, a pulsed field ion extraction, a time of flight analyzer and a two-dimensional position sensitive detector consisting of microchannel plate and a phosphor screen. The VMI spectrometer measures the kinetic energy and angular distribution of the fragment anions produced in the dissociative electron attachment process. The kinetic energy measurements provide information on the internal energies of the fragment anions and determine the dissociation limits of the parent negative ion resonant states responsible for the dissociative electron attachment process. The angular distribution measurements provide the information about the symmetry of these negative ion resonant states. We shall present the details, results and conclusions of these measurements during the conference

    Stability Properties of the Time Domain Electric Field Integral Equation Using a Separable Approximation for the Convolution with the Retarded Potential

    Full text link
    The state of art of time domain integral equation (TDIE) solvers has grown by leaps and bounds over the past decade. During this time, advances have been made in (i) the development of accelerators that can be retrofitted with these solvers and (ii) understanding the stability properties of the electric field integral equation. As is well known, time domain electric field integral equation solvers have been notoriously difficult to stabilize. Research into methods for understanding and prescribing remedies have been on the uptick. The most recent of these efforts are (i) Lubich quadrature and (ii) exact integration. In this paper, we re-examine the solution to this equation using (i) the undifferentiated form of the TD-EFIE and (ii) a separable approximation to the spatio-temporal convolution. The proposed scheme can be constructed such that the spatial integrand over the source and observer domains is smooth and integrable. As several numerical results will demonstrate, the proposed scheme yields stable results for long simulation times and a variety of targets, both of which have proven extremely challenging in the past.Comment: 9 pages, 13 figures. To be published in IEEE Transactions on Antennas and Propagatio

    Predictive haemodynamics in a one-dimensional human carotid artery bifurcation. Part II: application to graft design

    No full text
    A Bayesian surrogate modelling technique is proposed that may be able to predict an optimal bypass graft configuration for patients suffering with stenosis in the internal carotid artery (ICA). At the outset, this statistical technique is considered as a means for identifying key geometric parameters influencing haemodynamics in the human carotid bifurcation. This methodology uses a design of experiments (DoE) technique to generate candidate geometries for flow analysis. A pulsatile one dimensional Navier-Stokes solver incorporating fluid-wall interactions for a Newtonian fluid which predicts pressure and flow in the carotid bifurcation (comprising a stenosed segment in the internal carotid artery) is used for the numerical simulations. Two metrics, pressure variation factor (PVF) and maximum pressure (pm) are employed to directly compare the global and local effects, respectively, of variations in the geometry. The values of PVF and pm are then used to construct two Bayesian surrogate models. These models are statistically analysed to visualise how each geometric parameter influences PVF and pm. Percentage of stenosis is found to influence these pressure based metrics more than any other geometric parameter. Later, we identify bypass grafts with optimal geometric and material properties which have low values of PVF on five test cases with 70%, 75%, 80%, 85% and 90% stenosis in the ICA, respectively

    Microstructure, electronic structure and optical properties of combustion synthesized Co doped ZnO nanoparticles

    Get PDF
    We report on the microstructure, electronic structure and optical properties of nanocrystalline Zn1-xCoxO (x=0, 0.01, 0.03, 0.05 and 0.07) particles prepared by solution combustion technique using L-Valine as fuel. The detailed structural and micro-structural studies were carried out by XRD, HRTEM and TEM-SAED respectively, which confirms the formation of single phased, nano-sized particles. The electronic structure was determined through NEXAFS and atomic multiplet calculations/simulations performed for various symmetries and valence states of 'Co' to determine the valance state, symmetry and crystal field splitting. The correlations between the experimental NEXAFS spectra and atomic multiplet simulations, confirms that, 'Co' present is in the 2+ valence state and substituted at the 'Zn' site in tetrahedral symmetry with crystal field splitting, 10Dq =-0.6 eV. The optical properties and 'Co' induced defect formation of as-synthesized materials were examined by using diffuse reflectance and Photoluminescence spectroscopy, respectively. Red-shift of band gap energy (Eg) was observed in Zn1-xCoxO samples due to Co (0.58 à ) substitution at Zn (0.60 à ) site of the host ZnO. Also, in PL spectra, a prominent pre-edge peak corresponds to ultraviolet (UV) emission around 360-370 nm was observed with Co concentration along with near band edge emission (NBE) of the wide band gap ZnO and all samples show emission in the blue region. © 2015 Elsevier B.V. All rights reserved

    Effect of Fe doping on the structural, optical and magnetic properties of combustion synthesized nanocrystalline ZnO particles

    Get PDF
    In the present study, the effect of Fe substitution in nanocrystalline Zn1�xFexO (x = 0, 0.01, 0.03, 0.05 and 0.07) particles synthesized through solution combustion are reported. The detailed structural and microstructural studies of as-synthesized samples were carried out through X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Further, the optical and magnetic properties were investigated respectively through Diffuse Reflectance Spectroscopy and Superconducting Quantum Interference Device (SQUID). The XRD results as well as the Rietveld refinement on XRD data reveals the single phase, polycrystalline nature of the prepared materials and no impurities such as ZnFe2O4, Fe2O3, Fe3O4 were seen, which confirms the substitution of Fe at Zn site. SEM and TEM studies reveal that, the samples are porous and agglomerated due to the evolution of large amount of gases during the combustion and also as-formed particles are found to be in nano-range with an particle size varies from 20�25 nm. Optical studies show that, the absorption edge shifts to lower energy/higher wavelength. Room temperature magnetic (SQUID) studies shows that the undoped ZnO exhibit diamagnetic property where as Fe doped ZnO exhibit intrinsic room temperature ferromagnetism (RTFM) with increasing coercivity with Fe concentration and is attributed to the incorporation of Fe into ZnO host matrix. © 2017 The Society of Powder Technology Japa

    Ultrastructure of the epithelial cells and oleo-gumresin secretion in Boswellia serrata (Burseraceae)

    Get PDF
    The ultrastructure of epithelial cells of oleo-gumresin ducts in Boswellia serrata, the source of Indian olibanum, is described. Oleo-gumresin ducts are present in primary and secondary phloem. The duct lumen forms an enlarged apoplastic space surrounded by epithelial cells. The epithelial cells are rich in dictyosomes, lipid bodies, mitochondria with dilated cristae, multivesicular bodies, osmiophilic materials, plastids and vesicIes. Plastids have poorly developed internal membranes. Dictyosomes and plastids are possible sites of resin synthesis. The gum component of the exudate is formed in dictyosomes and from the outer layers of the inner tangential wall (wall facing the duct lumen). This wall is replenished from inside by the activity of dictyosomes. The secretory materials are transported to the apoplast by granulocrine and eccrine secretion. They migrate through the loose microfibrils of the inner tangential wall into the duct lumen. Rarely, epithelial cells of young ducts have rudimentary plasmodesmata on the inner tangential wall which may be channels for passage of secretory materials into the duct lumen
    corecore