17,644 research outputs found

    Ferromagnetism and the Effect of Free Charge Carriers on Electric Polarization in Y_2NiMnO_6 Double Perovskite

    Full text link
    The double perovskite Y_2NiMnO_6 displays ferromagnetic transition at Tc = 81 K. The ferromagnetic order at low temperature is confirmed by the saturation value of magnetization (M_s) and also, validated by the refined ordered magnetic moment values extracted from neutron powder diffraction data at 10 K. This way, the dominant Mn4+ and Ni2+ cationic ordering is confirmed. The cation-ordered P 21/n nuclear structure is revealed by neutron powder diffraction studies at 300 and 10 K. Analysis of frequency dependent dielectric constant and equivalent circuit analysis of impedance data takes into account the bulk contribution to total dielectric constant. This reveals an anomaly which coincides with the ferromagnetic transition temperature (T_c). Pyrocurrent measurements register a current flow with onset near Tc and a peak at 57 K that shifts with temperature ramp rate. The extrinsic nature of the observed pyrocurrent is established by employing a special protocol measurement. It is realized that the origin is due to re-orientation of electric dipoles created by the free charge carriers and not by spontaneous electric polarization at variance with recently reported magnetism-driven ferroelectricity in this materialComment: Published in Physical Review

    Thermal conductivity of graphene in Corbino membrane geometry

    Full text link
    Local laser excitation and temperature readout from the intensity ratio of Stokes to anti-Stokes Raman scattering signals are employed to study the thermal properties of a large graphene membrane. The concluded value of the heat conductivity coefficient \kappa ~ 600 W/m \cdot K is smaller than previously reported but still validates the conclusion that graphene is a very good thermal conductor.Comment: 4 pages, 3 figure

    The Latin Leaflet, Number 29

    Get PDF
    Polymer electrolytes represent the ultimate in terms of desirable properties of energy storage/conversion devices, as they can offer an all-solid-state construction, a wide variety of shapes and sizes, light-weight, low costs, high energy density and safety. Here we present our recent results concerning a novel strategy for preparing efficient polymer membranes which are successfully demonstrated as suitable electrolytes for several energy conversion and storage devices (i.e., Li- and Na-based batteries and DSSCs). Highly ionic conducting polymer electrolytes containing PEO-based functionalities and different components (e.g., Li/Na salts, RTILs, natural biosourced and cellulosic fillers) are successfully prepared via a rapid process and, directly or subsequently, cross-linked via UV irradiation (patent pending, PCT/IT2014/000008). All the prepared materials are thoroughly characterised in terms of their physical, chemical and morphological properties and tested for their electrochemical performances and durability. The UV-curing process on such materials led to the production of elastic and resistant amorphous macromolecular networks. Noticeably increased ionic conductivities are registered (10-3 S cm-1 at RT), along with very stable interfacial and storage stability and wide electrochemical stability windows. The different lab-scale solid-state devices show remarkable performances even at ambient temperature, at the level of those using liquid electrolytes, respect to which demonstrate much greater durability and safety. The obtained findings demonstrate a new, easy and low cost approach to fabricate and tailor-make polymer electrolytes with highly promising prospects for the next generation of advanced flexible energy production and storage devices

    Standardization of NPK Requirement in Banana Cv. "Njalipoovan" (Musa AB Group) in Onattukara Soil of South Kerala

    Get PDF
    Banana cv. "Njalipoovan" (Musa AB group, Syn. Ney Poovan) is one of the popular varieties cultivated in the homesteads of Kerala. This variety has high export potential due to its edible and keeping quality. Eventhough fertilizer requirement was worked out for different varieties; no attempt has been made to standardize the nutrient requirement of banana cv. "Njalippovan", especially in the loamy sand soils of Onattukara. Field experiments were conducted for two years (1998-2000) at Onattukara Regional Agricultural Research Station, Kayamkulam to study the influence of three levels each of N (100, 200 and 300 g plant-1), P2O5 (100, 200 and 300 g plant-1) and K2O (200,400 and 600 g plant-1) with one absolute control (nopoko) on growth, yield, quality and economics of cultivation. Increasing the rate of application of nitrogen, phosphorus and potassium improved the growth and yield. Total soluble solids (TSS), total sugars and reducing sugars increased with increasing levels of nitrogen and potassium. Fruit acidity decreased at higher rate of N and K2O. Applied phosphorus had no effect on quality of fruits. Application of N, P2O5 and K2O at 200:200:400 g plant-1 proved to be ideal for maintaining higher yield and benefit: cost ratio

    Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection

    Full text link
    We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal and M' idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is diagonal in the multimode number basis. For such input states, we derive series formulas for the optimal error probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the NDS states with that distribution and that for a given average total signal energy N_s, the fidelity is minimized by any multimode Fock state with N_s total signal photons. For reading of an ideal memory, it is shown that Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances. While the nonclassical states in general perform better than the coherent state, the quantitative performance gains differ depending on the values of the reflectances.Comment: 12 pages, 7 figures. This closely approximates the published version. The major change from v2 is that Section IV has been re-organized, with a no-go result for target detection under high loss conditions highlighted. The last sentence of the abstract has been deleted to conform to the arXiv word limit. Please see the PDF for the full abstrac

    Changes in the measured image separation of the gravitational lens system, PKS 1830-211

    Full text link
    We present eight epochs of 43 GHz, dual-polarisation VLBA observations of the gravitational lens system PKS 1830-211, made over fourteen weeks. A bright, compact ``core'' and a faint extended ``jet'' are clearly seen in maps of both lensed images at all eight epochs. The relative separation of the radio centroid of the cores (as measured on the sky) changes by up to 87 micro arcsec between subsequent epochs. A comparison with the previous 43 GHz VLBA observations (Garrett et al. 1997) made 8 months earlier show even larger deviations in the separation of up to 201 micro arcsec. The measured changes are most likely produced by changes in the brightness distribution of the background source, enhanced by the magnification of the lens. A relative magnification matrix that is applicable on the milliarcsecond scale has been determined by relating two vectors (the ``core-jet'' separations and the offsets of the polarised and total intensity emission) in the two lensed images. The determinant of this matrix, -1.13 +/-0.61, is in good agreement with the measured flux density ratio of the two images. The matrix predicts that the 10 mas long jet, that is clearly seen in previous 15 and 8.4 GHz VLBA observations (Garrett et al. 1997, Guirado et al. 1999), should correspond to a 4 mas long jet trailing to the south-east of the SW image. The clear non-detection of this trailing jet is a strong evidence for sub-structure in the lens and may require more realistic lens models to be invoked, e.g. Nair & Garrett (2000).Comment: 8 pages, 5 figure

    Case studies to enhance online student evaluation: Bond University – Surveying students online to improve learning and teaching

    Get PDF
    One of the most sensible ways of improving learning and teaching is to ask the students for feedback. At the end of each teaching period (i.e. semester or term) all universities and many schools survey their students. Usually these surveys are managed online. Questions ask for student perceptions about teaching, assessment and workload. The survey administrators report four common problems

    Circular dichroism of magneto-phonon resonance in doped graphene

    Full text link
    Polarization resolved, Raman scattering response due to E2g_{2g} phonon in monolayer graphene has been investigated in magnetic fields up to 29 T. The hybridization of the E2g_{2g} phonon with only the fundamental inter Landau level excitation (involving the n=0 Landau level) is observed and only in one of the two configurations of the circularly crossed polarized excitation and scattered light. This polarization anisotropy of the magneto-phonon resonance is shown to be inherent to relatively strongly doped graphene samples, with carrier concentration typical for graphene deposited on SiO2_2

    To evaluate the role of Lakshadi Avachoornana in the management of Dushta Vrana with special reference to Diabetic Ulcer : A Case Study

    Get PDF
    The global prevalence of diabetics is estimated to increase from 4.0% in 1995 to 5.5% by the year 2025. The chances of secondary infection are more in diabetics as the immunity of the patients is compromised and needs prolonged hospitalization, psychological and social problem for the patients and family. In Madhumehi the vessels of lower limb become weak and is unable to expel the Doshas (along with other Dushyas) leading to Prameha Pidakas more in lower extremities, which eventually burst open precipitating an ulcer.  Avachoornana is one among the Shashti Upakrama, explained by Acharya Sushrutha for management of Vrana. Numerous studies are done in the management of Dushta Vrana with the internal medication and external therapies. Here a preliminary attempt to study the effect of Avachoornana with Lakshadi Choorna in the management of the same was taken for the study
    corecore