919 research outputs found

    Antisite Disorder-induced Exchange Bias Effect in Multiferroic Y2CoMnO6

    Full text link
    Exchange bias effect in the ferromagnetic double perovskite compound Y2_2CoMnO6_6, which is also a multiferroic, is reported. The exchange bias, observed below 8~K, is explained as arising due to the interface effect between the ferromagnetic and antiferromagnetic clusters created by {\it antisite} disorder in this material. Below 8~K, prominent ferromagnetic hysteresis with metamagnetic "steps" and significant coercive field, HcH_c \approx 10~kOe are observed in this compound which has a TcT_c \approx 75~K. A model based on growth of ferromagnetic domains overcoming the elastic energy of structurally pinned magnetic interfaces, which closely resembles martensitic-like transitions, is adapted to explain the observed effects. The role of {\it antisite} disorder in creating the domain structure leading to exchange bias effect is highlighted in the present work.Comment: 4 pages two-column, 4 figures, accepted to Appl. Phys. Let

    Spin Freezing in the Spin Liquid Compound FeAl2O4

    Full text link
    Spin freezing in the AA-site spinel FeAl2_2O4_4 which is a spin liquid candidate is studied using remnant magnetization and nonlinear magnetic susceptibility and isofield cooling and heating protocols. The remnant magnetization behavior of FeAl2_2O4_4 differs significantly from that of a canonical spin glass which is also supported by analysis of the nonlinear magnetic susceptibility term χ3(T)\chi_3 (T). Through the power-law analysis of χ3(T)\chi_3 (T), a spin-freezing temperature, TgT_g = 11.4±\pm0.9~K and critical exponent, γ\gamma = 1.48±\pm0.59 are obtained. Cole-Cole analysis of magnetic susceptibility shows the presence of broad spin relaxation times in FeAl2_2O4_4, however, the irreversible dc susceptibility plot discourages an interpretation based on conventional spin glass features. The magnetization measured using the cooling-and-heating-in-unequal-fields protocol brings more insight to the magnetic nature of this frustrated magnet and reveals unconventional glassy behaviour. Combining our results, we arrive at the conclusion that the present sample of FeAl2_2O4_4 consists of a majority spin liquid phase with "glassy" regions embedded.Comment: 5 pages, 6 figs, 2-column, Accepted to Phys. Rev.

    Large Magnetoresistance and Jahn Teller effect in Sr2_2FeCoO6_6

    Get PDF
    Neutron diffraction measurement on the spin glass double perovskite Sr2_2FeCoO6_6 reveals site disorder as well as Co3+^{3+} intermediate spin state. In addition, multiple valence states of Fe and Co are confirmed through M\"{o}ssbauer and X-ray photoelectron spectroscopy. The structural disorder and multiple valence lead to competing ferromagnetic and antiferromagnetic interactions and subsequently to a spin glass state, which is reflected in the form of an additional TT-linear contribution at low temperatures in specific heat. A clear evidence of Jahn-Teller distortion at the Co3+^{3+}-O6_6 complex is observed and incorporating the physics of Jahn-Teller effect, the presence of localized magnetic moment is shown. A large, negative and anomalous magnetoresistance of \approx 63% at 14K in 12T applied field is observed for Sr2_2FeCoO6_6. The observed magnetoresistance could be explained by applying a semi-empirical fit consisting of a negative and a positive contribution and show that the negative magnetoresistance is due to spin scattering of carriers by localized magnetic moments in the spin glass phase

    Glassy Dielectric Response in Tb_2NiMnO_6 Double Perovskite with Similarities to a Griffiths Phase

    Full text link
    Frequency-dependent and temperature-dependent dielectric measurements are performed on double perovskite Tb2_2NiMnO6_6. The real (ϵ1\epsilon_1) and imaginary (ϵ2\epsilon_2) parts of dielectric permittivity show three plateaus suggesting dielectric relaxation originating from bulk, grain boundaries and the sample-electrode interfaces respectively. The temperature and frequency variation of ϵ1\epsilon_1 and ϵ2\epsilon_2 are successfully simulated by a RCRC circuit model. The complex plane of impedance, ZZ'-Z"Z", is simulated using a series network with a resistor RR and a constant phase element. Through the analysis of frequency-dependent dielectric constant using modified-Debye model, different relaxation regimes are identified. Temperature dependence of dc conductivity also presents a clear change in slope at, TT^*. Interestingly, TT^* compares with the temperature at which an anomaly occurs in the phonon modes and the Griffiths temperature for this compound. The components RR and CC corresponding to the bulk and the parameter α\alpha from modified-Debye fit tend support to this hypothesis. Though these results cannot be interpreted as magnetoelectric coupling, the relationship between lattice and magnetism is marked.Comment: Accepted in Europhysics Letter

    Double-phase transition and giant positive magnetoresistance in the quasi-skutterudite Gd3_3Ir4_4Sn13_{13}

    Full text link
    The magnetic, thermodynamic and electrical/thermal transport properties of the caged-structure quasi-skutterudite Gd3_3Ir4_4Sn13_{13} are re-investigated. The magnetization M(T)M(T), specific heat Cp(T)C_p(T) and the resistivity ρ(T)\rho(T) reveal a double-phase transition -- at TN1T_{N1}\sim 10~K and at TN2T_{N2}\sim 8.8~K -- which was not observed in the previous report on this compound. The antiferromagnetic transition is also visible in the thermal transport data, thereby suggesting a close connection between the electronic and lattice degrees of freedom in this Sn-based quasi-skutterudite. The temperature dependence of ρ(T)\rho(T) is analyzed in terms of a power-law for resistivity pertinent to Fermi liquid picture. Giant, positive magnetoresistance (MR) \approx 80%\% is observed in Gd3_3Ir4_4Sn13_{13} at 2~K with the application of 9~T. The giant MR and the double magnetic transition can be attributed to the quasi-cages and layered antiferromagnetic structure of Gd3_3Ir4_4Sn13_{13} vulnerable to structural distortions and/or dipolar or spin-reorientation effects. The giant value of MR observed in this class of 3:4:13 type alloys, especially in a Gd-compound, is the highlight of this work.Comment: 20 pages single column, 7 figures, 1 table; Accepted to J. Appl. Phys., 201

    Approaching the Ground State of Frustrated A-site Spinels: A Combined Magnetization and Polarized Neutron Scattering Study

    Get PDF
    We re-investigate the magnetically frustrated, {\it diamond-lattice-antiferromagnet} spinels FeAl2_2O4_4 and MnAl2_2O4_4 using magnetization measurements and diffuse scattering of polarized neutrons. In FeAl2_2O4_4, macroscopic measurements evidence a "cusp" in zero field-cooled susceptibility around 13~K. Dynamic magnetic susceptibility and {\it memory effect} experiments provide results that do not conform with a canonical spin-glass scenario in this material. Through polarized neutron scattering studies, absence of long-range magnetic order down to 4~K is confirmed in FeAl2_2O4_4. By modeling the powder averaged differential magnetic neutron scattering cross-section, we estimate that the spin-spin correlations in this compound extend up to the third nearest-neighbour shell. The estimated value of the Land\'{e} gg factor points towards orbital contributions from Fe2+^{2+}. This is also supported by a Curie-Weiss analysis of the magnetic susceptibility. MnAl2_2O4_4, on the contrary, undergoes a magnetic phase transition into a long-range ordered state below \approx 40~K, which is confirmed by macroscopic measurements and polarized neutron diffraction. However, the polarized neutron studies reveal the existence of prominent spin-fluctuations co-existing with long-range antiferromagnetic order. The magnetic diffuse intensity suggests a similar short range order as in FeAl2_2O4_4. Results of the present work supports the importance of spin-spin correlations in understanding magnetic response of frustrated magnets like AA-site spinels which have predominant short-range spin correlations reminiscent of the "spin liquid" state.Comment: 10 pages, 10 figures, double-column, accepted in Phys. Rev. B, 201
    corecore