10 research outputs found

    Label-Free Determination of the Number of Biomolecules Attached to Cells by Measurement of the Cell's Electrophoretic Mobility in a Microchannel

    Get PDF
    We developed a label-free method for a determination of the number of biomolecules attached to individual cells by measuring the electrophoretic mobility of the cells in a microchannel. The surface of a biological cell, which is dispersed in aqueous solution, is normally electrically charged and the charge quantity at the cell's surface is slightly changed once antibody molecules are attached to the cell, based on which we detect the attachment of antibody molecules to the surface of individual red blood cells by electrophoretic mobility measurement. We also analyzed the number of antibody molecules attached to the cell's surface using a flow cytometer. We found that there is a clear correlation between the number of antibody molecules attached to the individual cells and the electophoretic mobility of the cells. The present technique may well be utilized not only in the field of cell biology but also in the medical and pharmaceutical industries

    Modification of Capacitive Charge Storage of TiO2 with Nickel Doping

    Get PDF
    For practical deployment of supercapacitors characterized by high energy density, power density and long cycle life, they must be realized using low cost and environmentally benign materials. Titanium dioxide (TiO2) is largely abundant in the earth's crust; however, they show inferior supercapacitive electrochemical properties in most electrolytes for practical deployment. In this paper, we show that nickel doped TiO2 (Ni:TiO2) nanowires developed by electrospinning showed five times larger capacitance (∼200 F g−1) than the undoped analogue (∼40 F g−1). Electrochemical measurements show that the Ni:TiO2 nanowires have 100% coulombic efficiency. The electrodes showed no appreciable capacitance degradation for over 5000 cycles. The superior charge storage capability of the Ni:TiO2 could be due to its high electrical conductivity that resulted in five orders of magnitude higher ion diffusion as determined by cyclic voltammetry and electrochemical impedance spectroscopy measurements

    Review of the anatase to rutile phase transformation

    Full text link

    Template-Assisted Formation of Nanostructured Dopamine-Modified Polymers

    No full text
    Dopamine-modified alginate and gelatin were prepared. The polymers were characterized and the properties of their aqueous solutions were investigated. Aqueous solutions of dopamine-modified alginate and gelatin with a concentration exceeding 20 mg/mL naturally formed gels after 16 h. Although polydopamine itself was not used for template-assisted nanostructure formation, the modified polymers could be used with dopamine. Mixing with dopamine allowed the precise shape of the template to be maintained in the resulting material, allowing nanopatterned surfaces and nanotubes to be prepared

    Frontiers in nano-therapeutics

    No full text
    This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites

    Schematic diagram of an electrophoresis experimental system.

    No full text
    <p>Two conical electrodes are set at both the inlet and outlet of a microchannel. Cells are moved along the microchannel by applying a dc electric field.</p

    Correlation between the electrophoretic mobility of each RBC and the number of IgG molecules attached to the cell's surface.

    No full text
    <p>Correlation between the electrophoretic mobility of each RBC and the number of IgG molecules attached to the cell's surface.</p

    High Density of Aligned Nanowire Treated with Polydopamine for Efficient Gene Silencing by siRNA According to Cell Membrane Perturbation

    No full text
    High aspect ratio nanomaterials, such as vertically aligned silicon nanowire (SiNW) substrates, are three-dimensional topological features for cell manipulations. A high density of SiNWs significantly affects not only cell adhesion and proliferation but also the delivery of biomolecules to cells. Here, we used polydopamine (PD) that simply formed a thin coating on various material surfaces by the action of dopamine as a bioinspired approach. The PD coating not only enhanced cell adhesion, spreading, and growth but also anchored more siRNA by adsorption and provided more surface concentration for substrate-mediated delivery. By comparing plain and SiNW surfaces with the same amount of loaded siRNA, we quantitatively found that PD coating efficiently anchored siRNA on the surface, which knocked down the expression of a specific gene by RNA interference. It was also found that the interaction of SiNWs with the cell membrane perturbed the lateral diffusion of lipids in the membrane by fluorescence recovery after photobleaching. The perturbation was considered to induce the effective delivery of siRNA into cells and allow the cells to carry out their biological functions. These results suggest promising applications of PD-coated, high-density SiNWs as simple, fast, and versatile platforms for transmembrane delivery of biomolecules

    A novel synthesis route for brookite rich titanium dioxide photocatalyst involving organic intermediate

    No full text
    © 2014, Springer Science+Business Media New York.High temperature stable brookite rich titanium dioxide of average crystallite size 20 nm has been prepared by a novel aqueous sol–gel method involving hydroxyethyl cellulose polymer (HEC) as an organic intermediate, wherein titania powder with brookite phase content as high as 44 wt% was obtained. The existence of brookite phase has been evident even after calcination of the samples at 900 °C, which also helped to maintain a specific surface area value of 5.5 m2g-1 compared to the surface area of 2.2 m2g-1 measured on pure titania sample with only rutile phase. The brookite rich titania exhibited superior photocatalytic activity under UV irradiation with a rate constant value of 0.011 min-1 compared to the value of 0.003 min-1 measured for pure rutile phase rich titania samples under similar conditions. The present study indicates that HEC assisted thermal decomposition can be an effective route to produce efficient photoactive brookite rich titania powders
    corecore