7,279 research outputs found

    Total cross sections for neutron-nucleus scattering

    Full text link
    Systematics of neutron scattering cross sections on various materials for neutron energies up to several hundred MeV are important for ADSS applications. Ramsauer model is well known and widely applied to understand systematics of neutron nucleus total cross sections. In this work, we examined the role of nuclear effective radius parameter (r0_0) on Ramsauer model fits of neutron total cross sections. We performed Ramsauer model global analysis of the experimental neutron total cross sections reported by W. P. Abfalterer, F. B. Bateman, {\it et. al.,}, from 20MeV to 550MeV for nuclei ranging from Be to U . The global fit functions which can fit total cross section data over periodic table are provided along with the required global set of parameters. The global fits predict within ±8\pm 8% deviation to data, showing the scope for improvement. It has been observed that a finer adjustment of r0_0 parameter alone can give very good Ramsauer model description of neutron total scattering data within ±4\pm 4% deviation. The required r0_0 values for Ramsauer model fits are shown as a function of nuclear mass number and an empirical formula is suggested for r0_0 values as a function of mass number. In optical model approach for neutron scattering, we have modified the real part of Koning-Deleroche potentails to fit the neutron total cross sections using SCAT2 code. The modified potentails have a different energy dependence beyond 200MeV of neutron energy and fit the total cross sections from Al to Pb.Comment: 9 pages, 20figures, Poster number ND-1457, ND2010 Conference in Kore

    Electrical Transport Characteristics and Deep Level Transient Spectroscopy of Ni/V/n-InP Schottky Barrier Diodes

    Get PDF
    We report on the temperature-dependent electrical characteristics and deep level transient spectroscopy (DLTS) of the Ni/V/n-InP Schottky diodes in the temperature range of 180-420 K. Current density - voltage (J-V) characteristics of these diodes have been analyzed on the basis of thermionic emission theory with Gaussian distribution model of barrier height. The calculated Schottky barrier height (bo) and ideality factor (n) of Ni/V Schottky contact is in the range of 0.39 eV and 2.36 at 180 K, and 0.69 eV and 1.27 at 420 K, respectively. It is observed that the zero-bias barrier height increases while ideality factor decreases with increasing temperature. A bo versus q/2kT plot is drawn to obtain evidence of a Gaussian distribution of the barrier heights, and values of = 0.95 eV and 0 = 128 eV for the mean barrier height and standard deviation. A modified Richardson plot gives (T=0)= 0.98 eV and Richardson constant (A*) = 7.068 A K – 2cm – 2. The discrepancy between Schottky barrier height (SBHs) estimated from J-V and C-V measurements is also discussed. Thus, it is concluded that the temperature dependence of J-V characteristics of the SBHs on n-InP can be explained on the basis of themionic emission mechanism with Gaussian distribution of the barrier heights. DLTS results showed that two deep levels are identified (E1 and E2) in as-grown sample having activation energies of 0.29 ± 0.01 and 0.69 ± 0.02 with capture cross-section 3.29 × 10 – 15 cm2 and 5.85 × 10 – 17 cm2 respectively. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2777

    Electrical transport characteristics of Pd/V/N-InP Schottky diode from I-V-T and C-V-T measurements

    Get PDF
    The temperature dependence of current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the Pd/V contacts on undoped n-type InP Schottky barrier diodes (SBDs) have been systematically investigated in the temperature range of 200-400 K. The transition metal palladium (Pd) is used as a second contact layer because it has high work function, it reacts with InP at low temperatures and improved contact morphology. The ideality factor (n) and zero-bias barrier height are found to be strongly temperature dependent and while the zero-bias barrier height Φbo (I-V) increases, the ideality factor n decreases with increasing temperature. The experimental values of BH and n for the devices are calculated as 0.48 eV (I-V), 0.85 eV (C-V) and 4.87 at 200 K, 0.65 eV (I-V), 0.69 (C-V) eV and 1.58 at 400 K respectively. The I-V characteristics are analyzed on the basis of thermionic emission (TE) theory and the assumption of Gaussian distribution of barrier heights due to barrier inhomogeneities that prevail at the metal-semiconductor interface. The zero-bias barrier height Φbo versus 1/2kT plot has been drawn to obtain the evidence of a Gaussian distribution of the heights and the values of φ=0.89 eV and σ0= 145 meV for the mean barrier height and standard deviation. The conventional Richardson plot exhibits non-linearity with activation energy of 0.53 eV and the Richardson constant value of 4.25 × 10– 6 Acm– 2 K– 2. From the C-V characteristics, measured at 1 MHz the capacitance was determined to increase with increasing temperature. C-V measurements have resulted in higher barrier heights than those obtained from I-V measurements. As a result, it can be concluded that the temperature dependent characteristic parameters for Pd/V/n-InP SBDs can be successfully explained on the basis of TE mechanism with Gaussian distribution of the barrier heights. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2790

    X-ray spectral components in the hard state of GRS 1915+105: origin of the 0.5 - 10 Hz QPO

    Get PDF
    We investigate the origin of the ubiquitous 0.5 - 10 Hz QPO in the Galactic microquasar GRS 1915+105. Using the archival X-ray data from RXTE, we make a wide band X-ray spectral fitting to the source during a low-hard state observed in 1999 June. We resolve the X-ray spectra into three components, namely a multi-color disk component, a Comptonised component and a power-law at higher energies. This spectral description is favored compared to other normally used spectra like a cut-off power law, hard components with reflection etc. We find that the 0.5 - 10 Hz QPO is predominantly due to variations in the Comptonised component. We use this result to constrain the location of the various spectral components in the source

    On the origin of the various types of radio emission in GRS 1915+105

    Full text link
    We investigate the association between the radio ``plateau'' states and the large superluminal flares in GRS 1915+105 and propose a qualitative scenario to explain this association. We identify several candidate superluminal flare events from available monitoring data on this source and analyze the contemporaneous RXTE pointed observations. We detect a strong correlation between the average X-ray flux during the ``plateau'' state and the total energy emitted in radio during the subsequent radio flare. We find that the sequence of events is similar for all large radio flares with a fast rise and exponential decay morphology. Based on these results, we propose a qualitative scenario in which the separating ejecta during the superluminal flares are observed due to the interaction of the matter blob ejected during the X-ray soft dips, with the steady jet already established during the ``plateau'' state. This picture can explain all types of radio emission observed from this source in terms of its X-ray emission characteristics.Comment: Corrected typo in the author names, contents unchanged, accepted in Ap

    Analysis of Superconducting Fault Current Limiterin DC System with Renewable Energy Sources

    Full text link
    Superconducting fault-current limiters (SFCLs) have been the subject of research and development for many years and offer an attractive solution to the problem of rising fault levels in electrical distribution systems. SFCLs can greatly reduce fault currents and the damage at the point of fault, and help improve the stability of a power system. Superconducting fault-current limiters (SFCL) provide a new efficient approach to the reliable handling of such faults.(SCFLs) can be used for various nominal voltages and currents, and can be adapted to particular limiting characteristics in case of short circuits. In this project, dc resistive type superconducting fault current limiter (SFCL) is presented. This SFCL is designed for the HVDC system. Uniform current and voltage sharing among the SFCL modules can be observed through contact resistance tests, dc flow-through tests, and ac flow-through tests. Results of tests show that each limiting module has good uniformity in higher current system. The proposed concept can be implemented using renewable energy sources.The results are presented by using Matlab/Simulink platform

    Fortification of milk with phytosterol and its effect on sensory and physicochemical properties

    Get PDF
    peer-reviewedPhytosterols are a group of lipophilic steroid alcohols found in plants, which have been shown to lower cholesterol when supplemented in the diet. A commercial phytosterol preparation was added to milk in the form of an oil-in-water emulsion. For the preparation of an emulsion, diacetyl tartaric acid ester of mono- and diglycerides was used as an emulsifier and butteroil was used as a source of fat. Three emulsion formulations, i.e. A (8% phytosterols), B (10% phytosterols) and C (12% phytosterols), were prepared in which the levels of emulsifier (6.5%) and butteroil (10%) were kept constant, and each emulsion was added to milk at a rate of 5% (w/w). Based on sensory evaluation, B-emulsion formulation was selected for fortification of milk. The phytosterol content of the fortified milk determined by reverse-phase high-performance liquid chromatography was 410.8 mg/100 g. No significant loss in the initial content of phytosterol was observed after 1 week of storage. Sensory and physicochemical analyses indicated that significant differences were not observed between control and fortified milk samples up to 7 days of refrigerated storage. The present study suggests that it is feasible to add phytosterol as a functional ingredient in milk in the form of water-soluble emulsion to enhance health benefits of consumers. Two servings of such fortified milk per day provide almost the entire recommended daily requirement of phytosterol

    Interspecific hybridization and characterization of hybrids in genus Cicer L.

    Get PDF
    The cultivated chickpea, cicer arietinum L., and seven wild annual cicer species, viz. C. reticulatum, C. chinospermum, C. pinnatifidum, C. Judaicum, C bijugum, C.chorassanicum, and C. cuneatum were studied to gain information to assist in gene transfer through interspecific hybridization. Studies included investigation of pre-fertilization barrier(s) and cytogenetic study of interspecific hybrids. Species relationships among the annual cicer species were investigated by karyotyping, electron microscopy of pollen grains, pollen-pistil interaction studies and based on the results of interspecific hybridization. The hybrids were characterized morphologically, cytologically and by electron microscopy of pollen grains. It was concluded that the genetic variability present in C. reticulatum and C. chinospermum could be presently utilized with little or no difficulty for the genetic improvement of the cultivated chickpea. However utilization of genetic variability in the remaining five wild species will have to await development of appropriate in vitro technology to overcome the strong post-fertilization barrier(s) to interspecific hybridizatio
    corecore