7,596 research outputs found

    Towards developing robust algorithms for solving partial differential equations on MIMD machines

    Get PDF
    Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system

    Parallelization of implicit finite difference schemes in computational fluid dynamics

    Get PDF
    Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed

    Effects of T-tabs and large deflections in DCB specimen tests

    Get PDF
    A simple strength of materials analysis was developed for a double-cantilever beam (DCB) specimen to account for geometric nonlinearity effects due to large deflections and T-tabs. A new DCB data analysis procedure was developed to include the effects of these nonlinearities. The results of the analysis were evaluated by DCB tests performed for materials having a wide range of toughnesses. The materials used in the present study were T300/5208, IM7/8551-7, and AS4/PEEK. Based on the present analysis, for a typical deflection/crack length ratio of 0.3 (for AS4/PEEK), T-tabs and large deflections cause a 15 percent and 3 percent error, respectively, in the computer Mode 1 strain energy release rate. Design guidelines for DCB specimen thickness and T-tab height were also developed in order to keep errors due to these nonlinearities within 2 percent. Based on the test results, for both hinged and tabbed specimens, the effects of large deflection on the Mode 1 fracture toughness (G sub Ic) were almost negligible (less than 1 percent) in the case of T300/5208 and IM7/8551-7; however, AS4/PEEK showed a 2 to 3 percent effect. The effects of T-tabs G sub Ic were more significant for all the materials with T300/5208 showing a 5 percent error, IM7/8551-7 a 15 percent error, and, AS4/PEEK a 20 percent error

    Chondroid Syringoma and Eccrine Spiradenoma

    Get PDF
    Fine needle aspiration cytology (FNAC) is a well established diagnostic tool. However, most clinicians prefer to diagnose suspected skin tumors by excisional biopsy as they are easily accessible and hence benign skin adnexal tumors are rarely encountered on FNAC. There are only a very few case reports describing the fine needle aspiration cytologic features of chondroid syringoma and eccrine spiradenoma for diagnosis. Cases: First case was a 20 year old female who presented with firm,non-tender swelling in the left little finger measuring 1 cm in diameter. Smears showed clusters of round to plasmacytoid cells with moderate to abundant cytoplasm embedded in a chondromyxoid ground substance . Hence, a diagnosis of chondroid syringoma was made. Another case was a 40 year old lady who presented with a painful swelling on the anterior chest wall measuring approximately 0.8 cms in diameter. Smears were moderately cellular with cohesive sheets and clusters of bland cells of three different cell types. Hence, a probable diagnosis of eccrine spiradenoma was made and both the cases were confirmed histologically. Conclusion: Appropriate knowledge of the cytologic features of chondroid syringoma and eccrine spiradenoma helps in providing a definitive diagnosis and correct management of the patient

    Total cross sections for neutron-nucleus scattering

    Full text link
    Systematics of neutron scattering cross sections on various materials for neutron energies up to several hundred MeV are important for ADSS applications. Ramsauer model is well known and widely applied to understand systematics of neutron nucleus total cross sections. In this work, we examined the role of nuclear effective radius parameter (r0_0) on Ramsauer model fits of neutron total cross sections. We performed Ramsauer model global analysis of the experimental neutron total cross sections reported by W. P. Abfalterer, F. B. Bateman, {\it et. al.,}, from 20MeV to 550MeV for nuclei ranging from Be to U . The global fit functions which can fit total cross section data over periodic table are provided along with the required global set of parameters. The global fits predict within ±8\pm 8% deviation to data, showing the scope for improvement. It has been observed that a finer adjustment of r0_0 parameter alone can give very good Ramsauer model description of neutron total scattering data within ±4\pm 4% deviation. The required r0_0 values for Ramsauer model fits are shown as a function of nuclear mass number and an empirical formula is suggested for r0_0 values as a function of mass number. In optical model approach for neutron scattering, we have modified the real part of Koning-Deleroche potentails to fit the neutron total cross sections using SCAT2 code. The modified potentails have a different energy dependence beyond 200MeV of neutron energy and fit the total cross sections from Al to Pb.Comment: 9 pages, 20figures, Poster number ND-1457, ND2010 Conference in Kore

    Automated Failure Detection in Computer Vision Systems

    Get PDF
    Human validation of computer vision systems increase their operatingcosts and limits their scale. Automated failure detection canmitigate these constraints and is thus of great importance to thecomputer vision industry. Here, we apply a deep neural networkto detect computer vision failures on vehicle detection tasks. Theproposed model is a convolution neural network that estimates theoutput quality of a vehicle detector. We train the network to learnto estimate a pixel-level F1 score between the vehicle detector andhuman annotated data. The model generalizes well to testing data,providing a mechanism for identifying detection failures

    On the origin of the various types of radio emission in GRS 1915+105

    Full text link
    We investigate the association between the radio ``plateau'' states and the large superluminal flares in GRS 1915+105 and propose a qualitative scenario to explain this association. We identify several candidate superluminal flare events from available monitoring data on this source and analyze the contemporaneous RXTE pointed observations. We detect a strong correlation between the average X-ray flux during the ``plateau'' state and the total energy emitted in radio during the subsequent radio flare. We find that the sequence of events is similar for all large radio flares with a fast rise and exponential decay morphology. Based on these results, we propose a qualitative scenario in which the separating ejecta during the superluminal flares are observed due to the interaction of the matter blob ejected during the X-ray soft dips, with the steady jet already established during the ``plateau'' state. This picture can explain all types of radio emission observed from this source in terms of its X-ray emission characteristics.Comment: Corrected typo in the author names, contents unchanged, accepted in Ap
    corecore