6 research outputs found

    Variable-Permeability Well-Testing Models and Pressure Response in Low-Permeability Reservoirs with non-Darcy Flow

    Get PDF
    This paper proposes the concept of variable-permeability effect and sets up the one-dimensional and two-dimensional non-Darcy well testing models. The finite difference algorithm is employed to solve the differential equations of the variable-permeability model, and the non-convergence of the numerical solutions is solved by using the geometric mean of permeability. The type curves of pressure and pressure derivative with variable-permeability effect are obtained, and sensitivity analysis is conducted. The results show that the type curves upturn in the middle and late sections, and the curves turn more upward with the severer of the variable-permeability effect. The severer the non-Darcy effect is, the less obviously the curve upturns caused by boundary effect. Furthermore, the boundary effect is increased by increasing the number of impermeable boundaries or decreasing the distance between the well and boundary

    Variable-Permeability Well-Testing Models and Pressure Response in Low-Permeability Reservoirs with non-Darcy Flow

    No full text
    This paper proposes the concept of variable-permeability effect and sets up the one-dimensional and two-dimensional non-Darcy well testing models. The finite difference algorithm is employed to solve the differential equations of the variable-permeability model, and the non-convergence of the numerical solutions is solved by using the geometric mean of permeability. The type curves of pressure and pressure derivative with variable-permeability effect are obtained, and sensitivity analysis is conducted. The results show that the type curves upturn in the middle and late sections, and the curves turn more upward with the severer of the variable-permeability effect. The severer the non-Darcy effect is, the less obviously the curve upturns caused by boundary effect. Furthermore, the boundary effect is increased by increasing the number of impermeable boundaries or decreasing the distance between the well and boundary

    Comprehensive Evaluation of Waterflooding Performance with Induced Fractures in Tight Reservoir: A Field Case

    No full text
    Whether intentionally or unintentionally, waterflooding always takes place under fracturing condition in tight reservoir because of the extremely limited water absorption ability of the formation. Recently, we proposed a novel workflow, including real-time monitoring, formation testing analysis, and dynamic production analysis, to timely and effectively identify the initiation of waterflood-induced fractures (WIFs) and characterize the waterflooding behaviors for a well group. In this paper, we further provide a supplementary study to evaluate the waterflooding performance from the well group to the field basis. The utilization factor (UF) is first estimated on the basis of injection/production data by material balance theory, which provides an overall picture of water injection efficiency every year. Then, the areal (straightforwardly showed by water cut and formation pressure distributions) and vertical sweep (includes the water absorption in injectors and water breakthrough in producers) behaviors are studied to investigate the waterflooding characteristics and residual oil distributions. Lastly, three key influence factors are detailedly discussed: sand body connectivity, WIFs, and injection and production correspondence. Combining the previous work for the single well group, and the study in this paper to field basis, one can have a better and much more comprehensive understanding of the waterflooding performance and then thus take the corresponding adjustment measurements to improve waterflooding effectiveness
    corecore