5 research outputs found

    The Effect of Diaphragmatic Breathing on Attention, Negative Affect and Stress in Healthy Adults

    Get PDF
    A growing number of empirical studies have revealed that diaphragmatic breathing may trigger body relaxation responses and benefit both physical and mental health. However, the specific benefits of diaphragmatic breathing on mental health remain largely unknown. The present study aimed to investigate the effect of diaphragmatic breathing on cognition, affect, and cortisol responses to stress. Forty participants were randomly assigned to either a breathing intervention group (BIG) or a control group (CG). The BIG received intensive training for 20 sessions, implemented over 8 weeks, employing a real-time feedback device, and an average respiratory rate of 4 breaths/min, while the CG did not receive this treatment. All participants completed pre- and post-tests of sustained attention and affect. Additionally, pre-test and post-test salivary cortisol concentrations were determined in both groups. The findings suggested that the BIG showed a significant decrease in negative affect after intervention, compared to baseline. In the diaphragmatic breathing condition, there was a significant interaction effect of group by time on sustained attention, whereby the BIG showed significantly increased sustained attention after training, compared to baseline. There was a significant interaction effect of group and time in the diaphragmatic breathing condition on cortisol levels, whereby the BIG had a significantly lower cortisol level after training, while the CG showed no significant change in cortisol levels. In conclusion, diaphragmatic breathing could improve sustained attention, affect, and cortisol levels. This study provided evidence demonstrating the effect of diaphragmatic breathing, a mind-body practice, on mental function, from a health psychology approach, which has important implications for health promotion in healthy individuals

    Fluorinated Strategies Among All‐Solid‐State Lithium Metal Batteries from Microperspective

    No full text
    All‐solid‐state lithium metal batteries (ASSLMBs) are becoming the crucial energy‐storage candidate in achieving both theoretical capacity and safety guarantee. However, the inherent defects of solid electrolytes (SEs) (low ionic conductivity, lack of mechanical properties, weak antioxidant capacity, etc.) and the existence of interfacial issues between electrodes (cathode/electrolyte interface and anode/electrolyte interface) hinder further practical application. To overcome these problems, many approaches have been developed, such as composite solid electrolytes, interfacial coatings, electrolyte additives, etc. Among them, fluorides and its derivatives with good chemical stability are generally believed as one of the significant materials for stabilizing ASSLMBs. In this article, the progress of fluorinated strategies in ASSLMBs is summarized from the aspects of fluorinated SEs and fluorinated interfaces. Meanwhile, the enhanced mechanisms of fluorinated strategies are emphasized from the microscopic view of the nanostructures evolution based on the discussion of emerging analysis technologies such as cryogenic transmission electron microscopy. The progress of future fluorinated strategies is prospected, and this review may thus instruct the rational design of high performance ASSLMBs

    Identification of a Goat Intersexuality-Associated Novel Variant Through Genome-Wide Resequencing and Hi-C

    No full text
    Background: Polled intersex syndrome (PIS) leads to reproductive disorders in goats and exerts a heavy influence on goat breeding. Since 2001, the core variant of an 11.7 kb deletion at ~129 Mb on chromosome 1 (CHI1) has been widely used as a genetic diagnostic criterion. In 2020, a ~0.48 Mb insertion within the PIS deletion was identified by sequencing in XX intersex goats. However, the suitability of this variation for the diagnosis of intersex goats worldwide and its further molecular genetic mechanism need to be clarified. Results: The whole-genome selective sweep of intersex goats from China was performed with whole-genome next-generation sequencing technology for large sample populations and a case–control study on interbreeds. A series of candidate genes related to the goat intersexuality phenotype were found. We further confirmed that a ~0.48 Mb duplicated fragment (including ERG and KCNJ15) downstream of the ~20 Mb PIS region was reversely inserted into the PIS locus in intersex Chinese goats and was consistent with that in European Saanen and Valais black-necked goats. High-throughput chromosome conformation capture (Hi-C) technology was then used to compare the 3D structures of the PIS variant neighborhood in CHI1 between intersex and non-intersex goats. A newly found structure was validated as an intrachromosomal rearrangement. This inserted duplication changed the original spatial structure of goat CHI1 and caused the appearance of several specific loop structures in the adjacent ~20 kb downstream region of FOXL2. Conclusions: Results suggested that the novel complex PIS variant genome was sufficient as a broad-spectrum clinical diagnostic marker of XX intersexuality in goats from Europe and China. A series of private dense loop structures caused by segment insertion into the PIS deletion might affect the expression of FOXL2 or other neighboring novel candidate genes. However, these structures require further in-depth molecular biological experimental verification. In general, this study provided new insights for future research on the molecular genetic mechanism underlying female-to-male sex reversal in goats
    corecore