19 research outputs found

    Composition of fungal functional guilds explains variance in forest soil nutrient cycling

    Get PDF
    Soil fungi and bacteria are responsible for soil nutrient cycling, including decomposition, mineralization, immobilization, and transfer of nutrients to tree roots, yet the role of soil community composition in controlling forest nutrient cycling is poorly understood. We aimed to test the hypothesis that incorporating microbial community composition into linear models will increase the variation explained in forest soil N and P cycling relative to models including only plant community and abiotic characteristics. To do this, we designed a forested field system in New England in which variation in microbial community composition was crossed with variation in vegetation composition and soil nutrient content. At six forest sites (three suburban and three rural sites), we sampled soil along a transect from the forest edge to interior from four stand types dominated by trees of varying litter quality: pine-dominated, pure hardwood, hardwood with pines in the understory, and mature mixed pine-hardwood. In each soil sample, we measured inorganic and total nitrogen (N) and phosphorus (P), N and P mineralization rates, and nitrification rates. We also performed high-throughput sequencing of fungal and bacterial rDNA amplicons (16S/ITS) and calculated functional guild abundance for fungi and bacteria in each sample. Excluding microbial factors, N mineralization was best explained in a linear model by pH, soil temperature, soil moisture, % soil organic matter, and the abundance of understory vegetation; nitrification was best explained by pH, the proportion of hardwood litter, the abundance of understory vegetation, and basal area of arbuscular mycorrhizal-associating trees. We found that including the proportion of fungal functional guilds improved linear statistical models explaining variance in rates of N mineralization and nitrification, but not in single point measurements of inorganic N or total P. The proportion of ectomycorrhizal fungi per sample was positively related to N mineralization (p = 7e-05, R2 = 0.128), and including it in the model increased the proportion of variance explained in N mineralization rates by 2.8%. The proportion of saprotrophic fungi per sample was positively related to nitrification (p = 0.001, R2 = 0.083), and including it in the model increased the proportion of variance explained in nitrification rates by 2.0%. These findings suggest that ectomycorrhizal fungi may play a role in N mineralization, while saprotrophs may be more important for nitrification. We are currently building models to explain P mineralization and to improve current models by incorporating bacterial functional guilds.Fil: Vietorisz, Corinne. Boston University; Estados UnidosFil: Policelli, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina. Boston University; Estados UnidosFil: Li, Abigail. Boston University; Estados UnidosFil: Adams, Lindsey. Boston University; Estados UnidosFil: Bhatnagar, Jennifer M.. Boston University; Estados UnidosESA 2023 - Meeting of the Ecological Society of AmericaPortlandEstados UnidosEcological Society of Americ

    The interplay between propagule pressure, seed predation and ectomycorrhizal fungi in plant invasion

    Get PDF
    There are many hypotheses aiming to explain invasion success, but evaluating individual hypotheses in isolation may hinder our ability to understand why some species invade and others fail. Here we evaluate the interaction between propagule pressure, seed predation and missed mutualism in the invasion success of the pine, Pinus ponderosa. We evaluated the independent and interactive effects of propagule pressure and seed predation at increasing distances from a pine plantation. Additionally, because pines are obligate mutualists with ectomycorrhizal fungi (EMF) and pine invasions fail in the absence of their EMF symbionts, we evaluated EMF availability through a growth chamber bioassay. In this bioassay we measured root colonization by EMF with soil samples collected from the different distances from the plantation. We found that propagule pressure overwhelms seed predation only at the edge of the pine plantation, while seed predation overcomes propagule pressure at 25 m and further distances from the plantation. We also found that EMF root colonization decreases with distance from the plantation. However, pine roots were colonized up to 200 m from the plantation, suggesting that EMF may not be hindering invasion, at least not on the scale of this experiment. Taken together our results demonstrate that seed predation may be limiting the invasion of P. ponderosa in the study region as propagule pressure only overcomes seed predation at the plantation edge. Here we provide evidence of how strong biotic resistance can suppress an invasion, regardless of the variation in propagule pressure and the availability of mutualists.Fil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Chiuffo, Mariana Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Policelli, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Rodriguez Cabal, Mariano Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin

    Does elevated CO2 alter the way microbes behave underground?

    Get PDF
    Increase in carbon (C) emissions due to human activity is a major cause of global change, but it is unclear how trees obtain soil nutrients to sustain growth under these conditions. To better understand how root symbiotic fungi (ectomycorrhizal fungi, EMF) will react to an increase in atmospheric CO2 we’ve simulated such scenario using synthetic ecosystems where pine trees were planted with and without their EMF (Suillus cothurnatus), nitrogen (N), and soil carbon (C) additions, in elevated vs ambient CO2 growth chambers. By combining biogeochemical analysis with differential isotopic signatures of soil vs plant C, and a series of -omic approaches, we captured changes in soil nutrients, soil respiration, and microbial composition and activity. We found that elevated CO2 did not lead to a change in free living fungal community composition compared to ambient CO2. However, under elevated CO2, more gene modules of S. cothurnatus involved in C-N degradation pathways were impacted by soil C and N additions. In turn, under elevated CO2 and when the EMF was present, we found high enrichment of non-targeted metabolites. The release of CO2 from soil was highly dependent on soil C and N availability and shifted depending on plant C availability. Our results inform ecosystem models by showing that interactions between free living fungi and EMF are an important mechanism for determining ecosystem responses to elevated CO2. In turn, our results challenge the classic perspective that EMF solely absorb nutrients and water and give them to plants.Fil: Policelli, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina. Boston University; Estados UnidosFil: Averill, Colin. Eidgenossische Technische Hochschule zurich (eth Zurich);Fil: Brzostek, Edward. West Virginia University; Estados UnidosFil: Wang, Haihua. University of Florida; Estados UnidosFil: Liao, Hui-Ling. University of Florida; Estados UnidosFil: Verma, Vijay. University of Florida; Estados UnidosFil: Tappero, Ryan. Brookhaven National Laboratory; Estados UnidosFil: Vietorisz, Corinne. Boston University; Estados UnidosFil: Nash, Jake. University of Duke; Estados UnidosFil: Vilgalys, Rytas. University of Duke; Estados UnidosFil: Bhatnagar, Jennifer M.. Boston University; Estados UnidosESA 2023 - Meeting of the Ecological Society of AmericaPortlandEstados UnidosEcological Society of Americ

    Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences

    Get PDF
    Introductions and invasions by fungi, especially pathogens and mycorrhizal fungi, are widespread and potentially highly consequential for native ecosystems, but may also offer opportunities for linking microbial traits to their ecosystem functions. In particular, treating ectomycorrhizal (EM) invasions, i.e., co-invasions by EM fungi and their EM host plants, as natural experiments may offer a powerful approach for testing how microbial traits influence ecosystem functions. Forests dominated by EM symbiosis have unique biogeochemistry whereby the secretions of EM plants and fungi affect carbon (C) and nutrient cycling; moreover, particular lineages of EM fungi have unique functional traits. EM invasions may therefore alter the biogeochemistry of the native ecosystems they invade, especially nitrogen (N) and C cycling. By identifying “response traits” that favor the success of fungi in introductions and invasions (e.g., spore dispersal and germination) and their correlations with “effect traits” (e.g., nutrient-cycling enzymes) that can alter N and C cycling (and affect other coupled elemental cycles), one may be able to predict the functional consequences for ecosystems of fungal invasions using biogeochemistry models that incorporate fungal traits. Here, we review what is already known about how EM fungal community composition, traits, and ecosystem functions differ between native and exotic populations, focusing on the example of EM fungi associated with species of Pinus introduced from the Northern into the Southern Hemisphere. We develop hypotheses on how effects of introduced and invasive EM fungi may depend on interactions between soil N availability in the exotic range and EM fungal traits. We discuss how such hypotheses could be tested by utilizing Pinus introductions and invasions as a model system, especially when combined with controlled laboratory experiments. Finally, we illustrate how ecosystem modeling can be used to link fungal traits to their consequences for ecosystem N and C cycling in the context of biological invasions, and we highlight exciting avenues for future directions in understanding EM invasion.Fil: Hoeksema, Jason D.. University of Mississippi; Estados UnidosFil: Averill, Colin. No especifíca;Fil: Bhatnagar, Jennifer M.. Boston University; Estados UnidosFil: Brzostek, Edward. West Virginia University; Estados UnidosFil: Buscardo, Erika. Universidade do Brasília; BrasilFil: Chen, Ko Hsuan. University of Florida; Estados UnidosFil: Liao, Hui Ling. University of Florida; Estados UnidosFil: Nagy, Laszlo. Universidade Estadual de Campinas; BrasilFil: Policelli, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Ridgeway, Joanna. West Virginia University; Estados UnidosFil: Rojas, J. Alejandro. University of Arkansas for Medical Sciences; Estados UnidosFil: Vilgalys, Rytas. University of Duke; Estados Unido

    Is prescribed fire a suitable management tool to reduce shrub encroachment in palm savannas?

    No full text
    Shrub encroachment in grasslands is a worldwide problem that has many ecological consequences, transforming previously open environments into dense forests. Disruption of natural fire regimes is one of the main causes of shrub encroachment, and the use of prescribed fire is a common strategy used to restore these ecosystems. In this study, we provide information about how a palm tree savanna under a process of shrub encroachment responds to the reintroduction of fire. We describe the effects of a first fire event on vegetation composition and structure using an experimental approach. We examine a species-specific response to the fire. After one prescribed fire event applied to four study areas of 16 ha each, we analyzed the change in vegetation physiognomy and composition in burned and control plots for 1 year. Low-intensity prescribed fire decreased height and cover of most shrub species and increased herbaceous vegetation cover over time. We classified shrub and herbaceous species response to fire according to the time they became present and their phenological characteristics. Our results can help stakeholders to determine if prescribed fire is helpful at reducing shrub encroachment in short term in similar ecosystems, considering how plant community responds to the reintroduction of fire after decades of fire suppression.Fil: Policelli, Nahuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología de Poblaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Picca, Pablo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Gomez Villafañe, Isabel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentin

    Suilloid fungi as global drivers of pine invasions

    Get PDF
    Belowground biota can deeply influence plant invasion. The presence of proper soil mutualists can act as a driver that enable plants to colonize new ranges. We review the species of ectomycorrhizal fungi (EMF) that facilitate pine establishment in both native and non-native ranges and that are associated with their invasion into nonforest settings. We found that one particular group of EMF, suilloid fungi, uniquely drive pine invasion in the absence of other EMF. While the association with other EMF is variable, suilloid EMF are always associated with invasive pines, particularly at early invasion, when invasive trees are most vulnerable. We identified five main ecological traits of suilloid fungi that may explain their key role at pines invasion: their long distance dispersal capacity, the establishment of positive biotic interactions with mammals, their capacity to generate a resistant spore bank, their rapid colonization of roots, and their long distance exploration type. These results suggest that the identity of mycorrhizal fungi, and their ecological interactions, rather than simply the presence of compatible fungi, are key to understanding plant invasion processes and their success or failure. Particularly for pines, their specific association with suilloid fungi determines their invasion success in previously uninvaded ecosystems.Fil: Policelli, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Bruns, Thomas. University of California at Berkeley; Estados UnidosFil: Vilgalys, Rytas. University of Duke; Estados UnidosFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin

    Invasive ectomycorrhizal fungi can disperse in the absence of their known vectors

    No full text
    Positive interactions between non-native species can accelerate their invasion rate and exacerbate their impacts. This has been shown for non-native mammals that disperse invasive ectomycorrhizal fungi (EMF), in turn facilitating the invasion of non-native tree species. Mammal-mediated dispersion is assumed to be the main mechanism of EMF long distance dispersal, being particularly critical for truffle-like EMF species. We asked whether the absence of non-native mammals is an obstacle for Pinaceae invasion given the lack of invasive EMF being dispersed. We studied EMF species colonization and Pseudotsuga menziesii (Douglas-fir) trees’ growth in soil from mainland sites where non-native mammals are highly abundant, and lake islets in which they have been historically absent. Contrary to what we expected, we found invasive EMF, including truffle-like species, in sites where invasive mammals have been historically absent. Douglas-fir trees grew equally well and had the same EMF colonization in soil from mainland and islets. Alternative mechanisms of EMF dispersal, such as saltation, bird dispersal, or human dispersal, can be involved in their arrival to native stands. The presence of invasive EMF makes native sites vulnerable to Pinaceae invasion, even in the absence of mammalian dispersers.Fil: Policelli, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Horton, Thomas R.. State University of New York; Estados UnidosFil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. University of Houston; Estados Unido

    Co-invasive ectomycorrhizal fungi alter native soil fungal communities

    No full text
    Purpose: Pinaceae (pine family) trees are native to the Northern Hemisphere and their invasion into the Southern Hemisphere is a growing problem threatening biological diversity. Pinaceae are ectomycorrhizal (ECM) and their invasions are facilitated by non-native and co-invasive ECM fungi. Nothofagaceae species (southern beeches) are dominant overstory trees across large swaths of the Southern Hemisphere and are the only widespread ECM trees native to southern South America (SSA). This observational study investigates the in situ impact of Pinaceae invasions upon native soil fungi associated with Nothofagaceae hosts in SSA. Methods: We performed soil nutrient testing and metabarcode sequencing of fungi in the rhizosphere of Nothofagus antarctica and Nothofagus dombeyi invaded by Pinaceae trees to determine whether co-invasive fungi might impact native soil fungi. Sampling transects extended from invasions into adjacent Nothofagus stands without invasive Pinaceae. Results: The fungal community composition of the Nothofagaceae rhizosphere was dominated by plant-associated Mortierellaceae OTUs in metabarcode data. Mortierellaceae OTU relative abundance was significantly reduced near invasions of Pinus contorta (Pinaceae). Invasions of Pseudotsuga menziesii (Pinaceae) and Pinus contorta were associated with reduced relative abundance of Nothofagus-associated ECM OTUS in the Nothofagus rhizosphere. Pinus contorta invasions were also associated with reduced soil organic matter, total carbon, total phosphorus, and total nitrogen. Conclusion: Further empirical study is warranted to investigate the hypothesis that Mortierellaceae and Pinaceae-specific /suillus-rhizopogon ECM fungi compete for nutrients bound in soil organic matter. Such competition may have potential long-term legacy effects upon post-invasion restoration efforts and implications for Pinaceae invasions globally.Fil: Mujic, Alija Bajro. California State University; Estados UnidosFil: Policelli, Nahuel. Boston University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Nuñez, Martin Andres. University Of Houston; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Truong, Camille. University of Florida; Estados UnidosFil: Smith, Matthew E.. University of Florida; Estados Unido

    AFLP characterization of three argentine Coprotus species

    Get PDF
    AFLP methodology was applied to characterize three Coprotus species (C. lacteus, C. niveus, C. sexdecimsporus) so as to estimate the levels of polymorphism within species, to analyze the phenetic relationships among them, and to contrast the AFLP findings to those of a previous RAPD study. The high number of AFLP bands obtained with the six assayed primers allowed us to detect intra-specific variability. The genetic variability within species obtained using AFLP (measured in terms of percentage of polymorphic loci) was two to three times higher than those obtained by RAPD. The phenograms generated by AFLP markers grouped all strains of the same species into three defined clusters, and a higher association between C. lacteus and C. sexdecimsporus was also observed. The AFLP technique could become a powerful tool for genera such as Coprotus, in which a high intra-specific homogeneity does not allow detection of genetic variability using other PCR-based markers.Fil: Ramos, Araceli Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Tadic, Luis Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Policelli, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Ferreyra, Laura Ines. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Cinto, Isabel Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; Argentin

    Increase in nonnative understorey vegetation cover after nonnative conifer removal and passive restoration

    No full text
    Nonnative conifers are widespread in the southern hemisphere, where their use as plantation species has led to adverse ecosystem impacts sometimes intensified by invasion. Mechanical removal is a common strategy used to reduce or eliminate the negative impacts of nonnative conifers, and encourage native regeneration. However, a variety of factors may preclude active ecological restoration following removal. As a result, passive restoration – unassisted natural vegetation regeneration – is common following conifer removal. We asked, ‘what is the response of understorey cover to removal of nonnative conifer stands followed by passive restoration?' We sampled understorey cover in three site types: two- to ten-year-old clearcuts, native forest and current plantations. We then grouped understorey species by origin (native/nonnative) and growth form, and compared proportion and per cent cover of these groups as well as of bare ground and litter between the three site types. For clearcuts, we also analysed the effect of time since clearcut on the studied variables. We found that clearcuts had a significantly higher average proportion of nonnative understorey vegetation cover than native forest sites, where nonnative vegetation was nearly absent. The understorey of clearcut sites also averaged more overall vegetation cover and more nonnative vegetation cover (in particular nonnative shrubs and herbaceous species) than either plantation or native forest sites. Notably, 99% of nonnative shrub cover in clearcuts was the invasive nonnative species Scotch broom (Cytisus scoparius). After ten years of passive recovery since clearcutting, the proportion of understorey vegetation cover that is native has not increased and remains far below the proportion observed in native forest sites. Reduced natural regeneration capacity of the native ecosystem, presence of invasive species in the surrounding landscape and land-use legacies from plantation forestry may inhibit native vegetation recovery and benefit opportunistic invasives, limiting the effectiveness of passive restoration in this context. Abstract in Spanish is available with online material.Fil: Sample, Martha. Northern Arizona University.; Estados UnidosFil: Aslan, Clare E.. Northern Arizona University.; Estados UnidosFil: Policelli, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Sanford, Robert L.. Northern Arizona University.; Estados UnidosFil: Nielsen, Erik. Northern Arizona University.; Estados UnidosFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin
    corecore