6 research outputs found

    Prognostic biomarkers in uveal melanoma: the status quo, recent advances and future directions

    Get PDF
    Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.N.J.L. would like to thank all members of the Laboratory of Clinical and Experi-mental Pathology (LPCE), Centre Hospitalier Universitaire de Nice, Nice, France; and all members of the Anatomic Pathology Service, Pathology Department, Centro Hospitalar e Universitario do Porto,Porto, Portugal, especially to JoseRamon Vizcaino (Head of Service), Joana Raposo Alves (Advisor ofPathology Training), Andre Coelho, David Tente and Francisca Emanuel Costa for their continuous support and help in the developmen

    Small but Challenging Conjunctival Melanoma: New Insights, Paradigms and Future Perspectives

    No full text
    Although its incidence has increased over the last decades, conjunctival melanoma (CM) remains a rare but challenging periocular malignancy. While there is currently no recognized standard of care, “no-touch” surgical excision followed by adjuvant treatments is usually recommended. Despite its small size, managing CM is challenging for clinicians. The first challenge is the high risk of tumour local recurrence that occurs in about one third of the patients. The management of locally advanced CM (≥T2) or multiple recurrences may require mutilating surgeries such as orbital exenteration (OE). The second challenge is the metastatic spread of CM that occurs in about one quarter of patients, regardless of whether complete surgical excision is performed or not. This highlights the infiltrative and highly aggressive behaviour of CM. Recently, attention has been directed towards the use of eye-sparing strategies to avoid OE. Initially, wide conservative surgeries followed by customized brachytherapy or radiotherapy have appeared as viable strategies. Nowadays, new biological insights into CM have revealed similarities with cutaneous melanoma. These new findings have allowed clinicians to reconsider the management of locally advanced CM with “medical” eye-sparing treatment as well as the management of metastatic spread. The aim of this review was to summarize the current and future perspectives of treatment for CM based on recent biological findings

    Non-Cancer Effects following Ionizing Irradiation Involving the Eye and Orbit

    No full text
    International audienceThe eye is an exemplarily challenging organ to treat when considering ocular tumors. It is at the crossroads of several major aims in oncology: tumor control, organ preservation, and functional outcomes including vision and quality of life. The proximity between the tumor and organs that are susceptible to radiation damage explain these challenges. Given a high enough dose of radiation, virtually any cancer will be destroyed with radiotherapy. Yet, the doses inevitably absorbed by normal tissues may lead to complications, the likelihood of which increases with the radiation dose and volume of normal tissues irradiated. Precision radiotherapy allows personalized decision-making algorithms based on patient and tumor characteristics by exploiting the full knowledge of the physics, radiobiology, and the modifications made to the radiotherapy equipment to adapt to the various ocular tumors. Anticipation of the spectrum and severity of radiation-induced complications is crucial to the decision of which technique to use for a given tumor. Radiation can damage the lacrimal gland, eyelashes/eyelids, cornea, lens, macula/retina, optic nerves and chiasma, each having specific dose–response characteristics. The present review is a report of non-cancer effects that may occur following ionizing irradiation involving the eye and orbit and their specific patterns of toxicity for a given radiotherapy modality.</jats:p

    Any Place for Immunohistochemistry within the Predictive Biomarkers of Treatment in Lung Cancer Patients?

    No full text
    The identification of certain genomic alterations (EGFR, ALK, ROS1, BRAF) or immunological markers (PD-L1) in tissues or cells has led to targeted treatment for patients presenting with late stage or metastatic lung cancer. These biomarkers can be detected by immunohistochemistry (IHC) and/or by molecular biology (MB) techniques. These approaches are often complementary but depending on, the quantity and quality of the biological material, the urgency to get the results, the access to technological platforms, the financial resources and the expertise of the team, the choice of the approach can be questioned. The possibility of detecting simultaneously several molecular targets, and of analyzing the degree of tumor mutation burden and of the micro-satellite instability, as well as the recent requirement to quantify the expression of PD-L1 in tumor cells, has led to case by case development of algorithms and international recommendations, which depend on the quality and quantity of biological samples. This review will highlight the different predictive biomarkers detected by IHC for treatment of lung cancer as well as the present advantages and limitations of this approach. A number of perspectives will be considered
    corecore