604 research outputs found

    SU(2) Calorons and Magnetic Monopoles

    Full text link
    We investigate the self-dual Yang-Mills gauge configurations on R3×S1R^3\times S^1 when the gauge symmetry SU(2) is broken to U(1) by the Wilson loop. We construct the explicit field configuration for a single instanton by the Nahm method and show that an instanton is composed of two self-dual monopoles of opposite magnetic charge. We normalize the moduli space metric of an instanton and study various limits of the field configuration and its moduli space metric.Comment: 17 pages, RevTex, 1 Figur

    Dyons in N=4 Supersymmetric Theories and Three-Pronged Strings

    Full text link
    We construct and explore BPS states that preserve 1/4 of supersymmetry in N=4 Yang-Mills theories. Such states are also realized as three-pronged strings ending on D3-branes. We correct the electric part of the BPS equation and relate its solutions to the unbroken abelian gauge group generators. Generic 1/4-BPS solitons are not spherically symmetric, but consist of two or more dyonic components held apart by a delicate balance between static electromagnetic force and scalar Higgs force. The instability previously found in three-pronged string configurations is due to excessive repulsion by one of these static forces. We also present an alternate construction of these 1/4-BPS states from quantum excitations around a magnetic monopole, and build up the supermultiplet for arbitrary (quantized) electric charge. The degeneracy and the highest spin of the supermultiplet increase linearly with a relative electric charge. We conclude with comments.Comment: 33 pages, two figures, LaTex, a footnote added, the figure caption of Fig.2 expanded, one more referenc

    A Variational Expansion for the Free Energy of a Bosonic System

    Full text link
    In this paper, a variational perturbation scheme for nonrelativistic many-Fermion systems is generalized to a Bosonic system. By calculating the free energy of an anharmonic oscillator model, we investigated this variational expansion scheme for its efficiency. Using the modified Feynman rules for the diagrams, we obtained the analytical expression of the free energy up to the fourth order. Our numerical results at various orders are compared with the exact and other relevant results.Comment: 9 pages, 3 EPS figures. With a few typo errors corrected. to appear in J. Phys.

    Numerical Ricci-flat metrics on K3

    Full text link
    We develop numerical algorithms for solving the Einstein equation on Calabi-Yau manifolds at arbitrary values of their complex structure and Kahler parameters. We show that Kahler geometry can be exploited for significant gains in computational efficiency. As a proof of principle, we apply our methods to a one-parameter family of K3 surfaces constructed as blow-ups of the T^4/Z_2 orbifold with many discrete symmetries. High-resolution metrics may be obtained on a time scale of days using a desktop computer. We compute various geometric and spectral quantities from our numerical metrics. Using similar resources we expect our methods to practically extend to Calabi-Yau three-folds with a high degree of discrete symmetry, although we expect the general three-fold to remain a challenge due to memory requirements.Comment: 38 pages, 10 figures; program code and animations of figures downloadable from http://schwinger.harvard.edu/~wiseman/K3/ ; v2 minor corrections, references adde

    Localisation of Fermions to brane: Codimension d≄2d \geq 2

    Full text link
    We investigate 4+d4+d dimensional fermionic models in which the system in codimension-dd supports a topologically stable solution, and in which the fermion may be localised to the brane, with power law in 'instanton' backgrounds and exponentially in 'soliton' backgrounds. When the fermions are isoscalars, the mechanism fails, while for isospinor fermions it is successful. As backgrounds we consider instantons of Yang--Mills and sigma models in even codimensions, solitons of sigma models in odd codimensions, as well as solitons of Higgs and Goldstone models in all codimensions.Comment: 20 pages latex; expande

    Initial fixation placement in face images is driven by top-down guidance

    Get PDF
    The eyes are often inspected first and for longer period during face exploration. To examine whether this saliency of the eye region at the early stage of face inspection is attributed to its local structure properties or to the knowledge of its essence in facial communication, in this study we investigated the pattern of eye movements produced by rhesus monkeys (Macaca mulatta) as they free viewed images of monkey faces. Eye positions were recorded accurately using implanted eye coils, while images of original faces, faces with scrambled eyes, and scrambled faces except for the eyes were presented on a computer screen. The eye region in the scrambled faces attracted the same proportion of viewing time and fixations as it did in the original faces, even the scrambled eyes attracted substantial proportion of viewing time and fixations. Furthermore, the monkeys often made the first saccade towards to the location of the eyes regardless of image content. Our results suggest that the initial fixation placement in faces is driven predominantly by ‘top-down’ or internal factors, such as the prior knowledge of the location of “eyes” within the context of a face

    Conformal Invariance and Degrees of Freedom in the QCD String

    Full text link
    We demonstrate that the Hagedorn-like growth of the number of observed meson states can be used to constrain the degrees of freedom of the underlying effective QCD string. We find that the temperature relevant for such string theories is not given by the usual Hagedorn value TH≈160T_H\approx 160 MeV, but is considerably higher. This resolves an apparent conflict with the results from a static quark-potential analysis, and suggests that conformal invariance and modular invariance are indeed reflected in the hadronic spectrum. We also find that the D⊄=2D_\perp=2 scalar string is in excellent agreement with data.Comment: 13 pages (Standard LaTeX); --> replaced version emphasizes new results, and agrees with version to appear in Physical Review Letters (Jan 1994

    Inversion symmetric 3-monopoles and the Atiyah-Hitchin manifold

    Get PDF
    We consider 3-monopoles symmetric under inversion symmetry. We show that the moduli space of these monopoles is an Atiyah-Hitchin submanifold of the 3-monopole moduli space. This allows what is known about 2-monopole dynamics to be translated into results about the dynamics of 3-monopoles. Using a numerical ADHMN construction we compute the monopole energy density at various points on two interesting geodesics. The first is a geodesic over the two-dimensional rounded cone submanifold corresponding to right angle scattering and the second is a closed geodesic for three orbiting monopoles.Comment: latex, 22 pages, 2 figures. To appear in Nonlinearit

    ADHM/Nahm Construction of Localized Solitons in Noncommutative Gauge Theories

    Full text link
    We study the relationship between ADHM/Nahm construction and ``solution generating technique'' of BPS solitons in noncommutative gauge theories. ADHM/Nahm construction and ``solution generating technique'' are the most strong ways to construct exact BPS solitons. Localized solitons are the solitons which are generated by the ``solution generating technique.'' The shift operators which play crucial roles in ``solution generating technique'' naturally appear in ADHM/Nahm construction and we can construct various exact localized solitons including new solitons: localized periodic instantons (=localized calorons) and localized doubly-periodic instantons. Nahm construction also gives rise to BPS fluxons straightforwardly from the appropriate input Nahm data which is expected from the D-brane picture of BPS fluxons. We also show that the Fourier-transformed soliton of the localized caloron in the zero-period limit exactly coincides with the BPS fluxon.Comment: 30 pages, LaTeX, 3 figures; v3: minor changes, references added; v4: references added, version to appear in PR

    Loop expansion in Yang-Mills thermodynamics

    Get PDF
    We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.Comment: 15 pages, 2 figures, v5: discussion of much more severely constrained nonplanar situation included in Sec.
    • 

    corecore