25 research outputs found

    Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    Get PDF
    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 ??C with record-high surface area (4073 m2 g-1), large pore volume (2.26 cm-3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium-sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.clos

    Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes

    Get PDF
    Producing both hydrogen and high-value carbon nanotubes (CNTs) derived from waste plastics is reported here using a pyrolysis-reforming technology comprising a two-stage reaction system, in the presence of steam and a Ni-Mn-Al catalyst. The waste plastics consisted of plastics from a motor oil container (MOC), commercial waste high density polyethylene (HDPE) and regranulated HDPE waste containing polyvinyl chloride (PVC). The results show that hydrogen can be produced from the pyrolysis-reforming process, but also carbon nanotubes are formed on the catalyst. However, the content of 0.3 wt.% polyvinyl chloride in the waste HDPE (HDPE/PVC) has been shown to poison the catalyst and significantly reduce the quantity and purity of CNTs. The presence of sulfur has shown less influence on the production of CNTs in terms of quantity and CNT morphologies. Around 94.4 mmol H g plastic was obtained for the pyrolysis-reforming of HDPE waste in the presence of the Ni-Mn-Al catalyst and steam at a reforming temperature of 800 C. The addition of steam in the process results in an increase of hydrogen production and reduction of carbon yield; in addition, the defects of CNTs, for example, edge dislocations were found to be increased with the introduction of steam (from Raman analysis)

    A novel BRCA-1 mutation in Arab kindred from east Jerusalem with breast and ovarian cancer

    Get PDF
    BACKGROUND: The incidence of breast cancer (BC) in Arab women is lower compared to the incidence in the Jewish population in Israel; still, it is the most common malignancy among Arab women. There is a steep rise in breast cancer incidence in the Arab population in Israel over the last 10 years that can be attributed to life style changes. But, the younger age of BC onset in Arab women compared with that of the Jewish population is suggestive of a genetic component in BC occurrence in that population. METHODS: We studied the family history of 31 women of Palestinian Arab (PA) origin affected with breast (n = 28), ovarian (n = 3) cancer. We used denaturing high performance liquid chromatography (DHPLC) to screen for mutations of BRCA1/2 in 4 women with a personal and family history highly suggestive of genetic predisposition. RESULTS: A novel BRCA1 mutation, E1373X in exon 12, was found in a patient affected with ovarian cancer. Four of her family members, 3 BC patients and a healthy individual were consequently also found to carry this mutation. Of the other 27 patients, which were screened for this specific mutation none was found to carry it. CONCLUSION: We found a novel BRCA1 mutation in a family of PA origin with a history highly compatible with BRCA1 phenotype. This mutation was not found in additional 30 PA women affected with BC or OC. Therefore full BRCA1/2 screening should be offered to patients with characteristic family history. The significance of the novel BRCA1 mutation we identified should be studied in larger population. However, it is likely that the E1373X mutation is not a founder frequent mutation in the PA population

    Pyrolysis-catalytic hydrogenation of cellulose-hemicellulose-lignin and biomass agricultural wastes for synthetic natural gas production

    Get PDF
    The production of methane from the biopolymers; cellulose, hemicellulose and lignin, and also four different agricultural waste biomass samples was investigated using a two-stage pyrolysis-catalytic hydrogenation reactor. The biomass agricultural waste samples were rice straw, willow, sugar cane bagasse and ugu plant. Pyrolysis of the biomass samples was carried out in a 1st stage reactor while the catalytic hydrogenation was carried out the 2nd stage reactor using a 10 wt.% Ni/Al2O3 catalyst maintained at 500 °C with heating rate of 20 °C min−1 and a H2 space velocity of 3600 ml h−1 g−1catalyst. The thermal degradation characteristics of the biomass components, mixtures of the components and the biomass waste samples was also conducted using thermogravimetric analysis (TGA). TGA of the mixtures of the biomass components showed interaction, illustrated by a shift in the thermal degradation temperatures for hemicellulose and lignin. The results from the pyrolysis-catalytic hydrogenation revealed that the methane yield increased in the presence of the catalyst; the methane yield obtained from the hemicellulose (7.9 mmoles g−1biomass) and cellulose (7.65 mmoles g−1biomass) was significantly higher than that produced from lignin, (3.7 mmoles g−1biomass). The pyrolysis-catalytic hydrogenation of the mixtures of the biopolymers showed clear interaction, producing higher total gas yield and methane yield compared to calculated values. Pyrolysis-catalytic hydrogenation of the agricultural biomass wastes suggests that the product methane yield was influenced by the percentage of hemicellulose and cellulose content in the biomass

    Hydrogen and Carbon Nanotubes from Pyrolysis-Catalysis of Waste Plastics: A Review

    Get PDF
    More than 27 million tonnes of waste plastics are generated in Europe each year representing a considerable potential resource. There has been extensive research into the production of liquid fuels and aromatic chemicals from pyrolysis-catalysis of waste plastics. However, there is less work on the production of hydrogen from waste plastics via pyrolysis coupled with catalytic steam reforming. In this paper, the different reactor designs used for hydrogen production from waste plastics are considered and the influence of different catalysts and process parameters on the yield of hydrogen from different types of waste plastics are reviewed. Waste plastics have also been investigated as a source of hydrocarbons for the generation of carbon nanotubes via the chemical vapour deposition route. The influences on the yield and quality of carbon nanotubes derived from waste plastics are reviewed in relation to the reactor designs used for production, catalyst type used for carbon nanotube growth and the influence of operational parameters

    A deep learning energy method for hyperelasticity and viscoelasticity

    Full text link
    The potential energy formulation and deep learning are merged to solve partial differential equations governing the deformation in hyperelastic and viscoelastic materials. The presented deep energy method (DEM) is self-contained and meshfree. It can accurately capture the three-dimensional (3D) mechanical response without requiring any time-consuming training data generation by classical numerical methods such as the finite element method. Once the model is appropriately trained, the response can be attained almost instantly at any point in the physical domain, given its spatial coordinates. Therefore, the deep energy method is potentially a promising standalone method for solving partial differential equations describing the mechanical deformation of materials or structural systems and other physical phenomena
    corecore