7 research outputs found

    Synthesis of Phenothiazinium Derivatives

    No full text
    Photodynamic Therapy (PDT) of cancer involves radiating photosensitizing drugs with light in tumors, which results in generating active singlet oxygen that kills cancer cells. Photosensitizers currently used in PDT are of low quantum yield and require high energy radiation, normally laser. Therefore there is always need for more effective PDT drugs. In this project we synthesized new derivatives of phenothiazinium for potential applications in PDT. Phenothiazinium was synthesized and derivatized by linking it to side groups containing imidazole rings. These derivatives are also expected to catalyze certain hydrolytic reactions. Such ôhydrolase modelsö use molecular recognition based on ??? stacking between the phenothiazinium ring and aromatic rings of specific substrates, such as anthracene monophosphate, while imidazole groups catalyze the hydrolysis of the phosphate ester by general acid-base mechanism

    Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production

    No full text
    Photodynamic therapy (PDT) is a minimally-invasive procedure that has been clinically approved for treating certain types of cancers. This procedure takes advantage of the cytotoxic activity of singlet oxygen (1O2) and other reactive oxygen species (ROS) produced by visible and NIR light irradiation of dye sensitizers following their accumulation in malignant cells. The main two concerns associated with certain clinically-used PDT sensitizers that have been influencing research in this arena are low selectivity toward malignant cells and low levels of 1O2 production in aqueous media. Solving the selectivity issue would compensate for photosensitizer concerns such as dark toxicity and aggregation in aqueous media. One main approach to enhancing dye selectivity involves taking advantage of key methods used in pharmaceutical drug delivery. This approach lies at the heart of the recent developments in PDT research and is a point of emphasis in the present review. Of particular interest has been the development of polymeric micelles as nanoparticles for delivering hydrophobic (lipophilic) and amphiphilic photosensitizers to the target cells. This review also covers methods employed to increase 1O2 production efficiency, including the design of two-photon absorbing sensitizers and triplet forming cyclometalated Ir(III) complexes

    Synthesis and Encapsulation of a New Zinc Phthalocyanine Photosensitizer into Polymeric Nanoparticles to Enhance Cell Uptake and Phototoxicity

    Get PDF
    Efforts to enhance the utility of photodynamic therapy as a non-invasive method for treating certain cancers have often involved the design of dye sensitizers with increased singlet oxygen efficiency. More recently, however, sensitizers with greater selectivity for tumor cells than surrounding tissue have been targeted. The present study provides an approach to the modification of the known photosensitizer zinc phthalocyanine (ZnPc), to enhance its solubility and delivery to cancer cells. Targeting a photosensitizer to the site of action improves the efficacy of the sensitizer in photodynamic therapy. In this work we used PLGA-b-PEG to encapsulate a new zinc phthalocyanine derivative, 2(3), 9(10), 16(17), 23(24)-tetrakis-(4’-methyl-benzyloxy) phthalocyanine zinc(II) (ZnPcBCH3), to enhance uptake into A549 cells, a human lung cancer cell line. ZnPcBCH3 exhibited the same photochemical properties as the parent compound ZnPc but gave increased solubility in organic solvents, which allowed for efficient encapsulation. In addition, the encapsulated dye showed a near 500-fold increase in phototoxicity for A549 cancer cells compared to free dye

    Nurses' safety-related organisational challenges during the COVID-19 pandemic: A qualitative study

    No full text
    To explore nurses' perspectives on and experiences of safety-related organisational challenges during the coronavirus disease 2019 (COVID-19) outbreak by Iranian nurses

    Data from X-ray crystallographic analysis and DFT calculations on isomeric azo disperse dyes

    No full text
    X-ray crystallography and DFT calculations were used to characterize the molecular nature and excited state properties of isomeric photostable azo dyes for textile fibers undergoing extensive sunlight exposure. Structural data in CIF files arising from X-ray analysis are reported and the complete files are deposited with the Cambridge Crystallographic Data Centre as CCDC 1548989 (https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1548989) and CCDC 1548990 (https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1548990). Data from calculating the vertical electronic excitation of 20 excited states for each dye and from calculating excited state oxidation potential (ESOP) and Frontier HOMO/LUMO isosurfaces are also presented. This data is related to the article “Molecular and excited state properties of isomeric scarlet disperse dyes” (Lim et al., 2018) [1]
    corecore