11 research outputs found

    Synthesis, Characterization, Antimicrobial Screening and Free-Radical Scavenging Activity of Some Novel Substituted Pyrazoles

    No full text
    The present work deals with the synthesis of acetoxysulfonamide pyrazole derivatives, substituted 4,5-dihydropyrazole-1-carbothioamide and 4,5-dihydropyrazole-1-isonicotinoyl derivatives starting from substituted vanillin chalcones. Acetoxysulfonamide pyrazole derivatives were prepared from the reaction of chalcones with p-sulfamylphenylhydrazine followed by treatment with acetic anhydride. At the same time 4,5-dihydropyrazole-1-carbothioamide and 4,5-dihydropyrazole-1-isonicotinoyl derivatives were prepared from the reaction of chalcones with either thiosemicarbazide or isonicotinic acid hydrazide, respectively. The synthesized compounds were structurally characterized on the basis of IR, 1H-NMR, 13C-NMR spectral data and microanalyses. All of the newly isolated compounds were tested for their antimicrobial activities. The antimicrobial screening using the agar well-diffusion method revealed that the chloro derivatives are the most active ones. Moreover, the antioxidant and anti-inflammatory activity of these chloro derivatives are also studied using the DPPH radical scavenging and NO radical scavenging methods, respectively

    Synthesis and Antimicrobial Evaluation of Some Heterocyclic Chalcone Derivatives

    No full text
    Some new heterocyclic compounds containing isoxazole, pyrazole and oxadiazole ring systems were prepared from various chalcones. The synthesized compounds have been characterized by elemental analysis and spectral methods. These compounds were screened for their antimicrobial activities

    Synthesis and Antimicrobial Evaluation of Some Pyrazole Derivatives

    No full text
    Reaction of a series of <em>(E)</em>-3-phenyl-4-(<em>p</em>-substituted phenyl)-3-buten-2-ones with <em>p</em>-sulfamylphenyl hydrazine in glacial acetic acid gave the corresponding hydrazones, subsequent treatment of which with 30% HCl afforded pyrazole-1-sulphonamides. On the other hand, refluxing of chalcones with either thiosemicarbazide or isonicotinic acid hydrazide in ethanol containing a few drops of acetic acid gave pyrazoline-1-thiocarboxamides and isonicotinoyl pyrazolines, respectively. The structures of the synthesized compounds were determined on the basis of their elemental analyses and spectroscopic data. The antimicrobial activity of the newly isolated heterocyclic compounds was evaluated against Gram-positive, Gram-negative bacteria and fungi. Most of the compounds showed a moderate degree of potent antimicrobial activity

    Synthesis, Characterization, Antimicrobial Screening and Free-Radical Scavenging Activity of Some Novel Substituted Pyrazoles

    No full text
    The present work deals with the synthesis of acetoxysulfonamide pyrazole derivatives, substituted 4,5-dihydropyrazole-1-carbothioamide and 4,5-dihydropyrazole-1-isonicotinoyl derivatives starting from substituted vanillin chalcones. Acetoxysulfonamide pyrazole derivatives were prepared from the reaction of chalcones with p-sulfamylphenylhydrazine followed by treatment with acetic anhydride. At the same time 4,5-dihydropyrazole-1-carbothioamide and 4,5-dihydropyrazole-1-isonicotinoyl derivatives were prepared from the reaction of chalcones with either thiosemicarbazide or isonicotinic acid hydrazide, respectively. The synthesized compounds were structurally characterized on the basis of IR, 1H-NMR, 13C-NMR spectral data and microanalyses. All of the newly isolated compounds were tested for their antimicrobial activities. The antimicrobial screening using the agar well-diffusion method revealed that the chloro derivatives are the most active ones. Moreover, the antioxidant and anti-inflammatory activity of these chloro derivatives are also studied using the DPPH radical scavenging and NO radical scavenging methods, respectively

    A Computational Determination of Reactivity Descriptors, Vibrational Analysis and Nuclear Magnetic Resonance of (E)-5-oxo-1-phenyl-4-(2-phenylhydrazono)-4,5-dihydro- 1H-pyrazole-3-carbaldehyde

    No full text
    The title compound, pyrazole carbaldehyde have been optimized using Gaussian 9 software program, via density functional theory framework (DFT/B3LYP) by 6-311G (d, p) basis set, the output file was visualize using Gaussian view program, geometric properties, thermochemical and reactivity descriptors such as ionization potential (IP), electron affinity (EA), electronegativity (χ), chemical potential (μ), hardness (η), softness (σ), electrophilicity index (ω) and nucleophilicity index (N) were calculated.  Mapping of electrostatic surface potential (MESP) allow us to establish trends that enable making predictions about the reactive sites of the studied compound. Besides, the optimized structure is subjected to frequency analysis at the same level of theory to obtain thermodynamic correction values. Vibrational assignments and nuclear magnetic resonance (1H- &13C-NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method using the CPCM model, and mapping of current density shielding of proton and carbon nucleus of the aldehyde group shied light on the molecular properties and reactivity of 5-oxo-1-phenyl-4-(2-phenylhydrazono)-4,5- dihydro-1H-pyrazole-3-carbaldehyde

    Response of nine triticale genotypes to different salt concentrations at the germination and early seedling stages

    No full text
    Salinity stress poses a major challenge to agricultural productivity worldwide, and understanding their responses at the early growth stage is vital for devising strategies to cope with this stress. Therefore, to improve triticale productivity, this study investigated the salinity stress tolerance of different salt-tolerant triticale genotypes aiming to cultivate them on saline soils. To this end, salinity stress impacts on nine triticale genotypes, i.e., Zhongsi 1084, Gannong No. 2, Gannong No. 4, Shida No. 1, C6, C16, C23, C25 and C36 at germination and early seedling stages was evaluated. Each genotype was subjected to six treatments inducing control, 40, 80, 120, 160, and 200 mM NaCl treatments to study their effect on seedling and termination traits of the nine genotypes. Compared to the overall mean seedling vigor index, the seedling vigor index was higher in the genotypes Zhongsi 1084 and C6 (39% and 18.1%, respectively) and lower in Gannong No.2 (41%). Increasing NaCl concentrations negatively affected germination and seedling traits. Compared to other genotypes, Zhongsi 1084 had the highest mean germination rate, germination vigor index, germination percentage, mean daily germination and germination energy. It also showed the lowest relative salt injury. The relative salt injury was higher in the genotype Shida No. 1 than those in Gannong No. 2, Gannong No. 4, Shida No. 1, C16, and C36 genotypes. All genotypes exhibited desirable mean germination time except for line C6. High significant positive correlations were observed among germination rate, germination vigor index, germination percentage, mean daily germination, seedling vigor index, and root length. Principal component analysis (PCA) grouped the most desirable genotypes into two clusters. Our study determined salt stress tolerance of nine triticale genotypes at germination and early seedling stages. to select salt-tolerant genotypes that can be cultivated on saline soil or after salt irrigation
    corecore