8 research outputs found

    Transcription regulation of the EcoRV restriction–modification system

    Get PDF
    When a plasmid containing restriction–modification (R–M) genes enters a naïve host, unmodified host DNA can be destroyed by restriction endonuclease. Therefore, expression of R–M genes must be regulated to ensure that enough methyltransferase is produced and that host DNA is methylated before the endonuclease synthesis begins. In several R–M systems, specialized Control (C) proteins coordinate expression of the R and the M genes. C proteins bind to DNA sequences called C-boxes and activate expression of their cognate R genes and inhibit the M gene expression, however the mechanisms remain undefined. Here, we studied the regulation of gene expression in the C protein-dependent EcoRV system. We map the divergent EcoRV M and R gene promoters and we define the site of C protein-binding that is sufficient for activation of the EcoRV R transcription

    Regulation of gene expression in restriction-modification system Eco29kI

    Get PDF
    The Eco29kI restriction-modification (R-M) system consists of two partially overlapping genes, eco29kIR, encoding a restriction endonuclease and eco29kIM, encoding methyltransferase. The two genes are thought to form an operon with the eco29kIR gene preceding the eco29kIM gene. Such an organization is expected to complicate establishment of plasmids containing this R-M system in naive hosts, since common logic dictates that methyltransferase should be synthesized first to protect the DNA from cleavage by the endonuclease. Here, we characterize the Eco29kI gene transcription. We show that a separate promoter located within the eco29kIR gene is sufficient to synthesize enough methyltransferase to completely modify host DNA. We further show that transcription from two intragenic antisense promoters strongly decreases the levels of eco29kIR gene transcripts. The antisense transcripts act by preventing translation initiation from the bicistronic eco29kIR–eco29kIM mRNA and causing its degradation. Both eco29kIM and antisense promoters are necessary for Eco29kI genes establishment and/or stable maintenance, indicating that they jointly contribute to coordinated expression of Eco29kI genes

    Type II restriction endonuclease R.Eco29kI is a member of the GIY-YIG nuclease superfamily

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of experimentally determined crystal structures of Type II restriction endonucleases (REases) exhibit a common PD-(D/E)XK fold. Crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI), and bioinformatics analyses supported by mutagenesis suggested that some REases belong to the HNH fold. Our previous bioinformatic analysis suggested that REase R.Eco29kI shares sequence similarities with one more unrelated nuclease superfamily, GIY-YIG, however so far no experimental data were available to support this prediction. The determination of a crystal structure of the GIY-YIG domain of homing endonuclease I-TevI provided a template for modeling of R.Eco29kI and prompted us to validate the model experimentally.</p> <p>Results</p> <p>Using protein fold-recognition methods we generated a new alignment between R.Eco29kI and I-TevI, which suggested a reassignment of one of the putative catalytic residues. A theoretical model of R.Eco29kI was constructed to illustrate its predicted three-dimensional fold and organization of the active site, comprising amino acid residues Y49, Y76, R104, H108, E142, and N154. A series of mutants was constructed to generate amino acid substitutions of selected residues (Y49A, R104A, H108F, E142A and N154L) and the mutant proteins were examined for their ability to bind the DNA containing the Eco29kI site 5'-CCGCGG-3' and to catalyze the cleavage reaction. Experimental data reveal that residues Y49, R104, E142, H108, and N154 are important for the nuclease activity of R.Eco29kI, while H108 and N154 are also important for specific DNA binding by this enzyme.</p> <p>Conclusion</p> <p>Substitutions of residues Y49, R104, H108, E142 and N154 predicted by the model to be a part of the active site lead to mutant proteins with strong defects in the REase activity. These results are in very good agreement with the structural model presented in this work and with our prediction that R.Eco29kI belongs to the GIY-YIG superfamily of nucleases. Our study provides the first experimental evidence for a Type IIP REase that does not belong to the PD-(D/E)XK or HNH superfamilies of nucleases, and is instead a member of the unrelated GIY-YIG superfamily.</p

    Steady-state levels of PRV•CR and PRV•M transcripts in the presence or in the absence of C

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Transcription regulation of the EcoRV restriction–modification system"</p><p>Nucleic Acids Research 2005;33(21):6942-6951.</p><p>Published online 6 Dec 2005</p><p>PMCID:PMC1310966.</p><p>© The Author 2005. Published by Oxford University Press. All rights reserved</p>EcoRV. RNA was purified from the HB101 cells harboring the indicated plasmids and primer extension reactions were performed to reveal 5′ end of divergent RNAs arising from the EcoRV regulatory region. The R primer allows the detection of rightward transcripts from pR or pM (PRV•CR or PRV•M transcripts, correspondingly). The L primer allows the detection of leftward transcripts from pR or pM (PRV•M or PRV•CR transcripts, correspondingly). The sequencing reactions' marker lanes were prepared using the pM or pR plasmids and primers used for primer extension
    corecore