3,689 research outputs found
Additive for zinc electrodes
A zinc electrode for alkaline cells includes up to about ten percent by weight of Ba(OH)2.8H2O with about five percent being preferred. The zinc electrode may or may not be amalgamated with mercury
Conicoid Mirrors
The first order equation relating object and image location for a mirror of
arbitrary conic-sectional shape is derived. It is also shown that the parabolic
reflecting surface is the only one free of aberration and only in the limiting
case of distant sources.Comment: 9 page
Families of Graphs with W_r({G},q) Functions That Are Nonanalytic at 1/q=0
Denoting as the chromatic polynomial for coloring an -vertex
graph with colors, and considering the limiting function , a fundamental question in graph theory is the
following: is analytic or not at the origin
of the plane? (where the complex generalization of is assumed). This
question is also relevant in statistical mechanics because
, where is the ground state entropy of the
-state Potts antiferromagnet on the lattice graph , and the
analyticity of at is necessary for the large- series
expansions of . Although is analytic at for many
, there are some for which it is not; for these, has no
large- series expansion. It is important to understand the reason for this
nonanalyticity. Here we give a general condition that determines whether or not
a particular is analytic at and explains the
nonanalyticity where it occurs. We also construct infinite families of graphs
with functions that are non-analytic at and investigate the
properties of these functions. Our results are consistent with the conjecture
that a sufficient condition for to be analytic at is
that is a regular lattice graph . (This is known not to be a
necessary condition).Comment: 22 pages, Revtex, 4 encapsulated postscript figures, to appear in
Phys. Rev.
The Kasteleyn model and a cellular automaton approach to traffic flow
We propose a bridge between the theory of exactly solvable models and the
investigation of traffic flow. By choosing the activities in an apropriate way
the dimer configurations of the Kasteleyn model on a hexagonal lattice can be
interpreted as space-time trajectories of cars. This then allows for a
calculation of the flow-density relationship (fundamental diagram). We further
introduce a closely-related cellular automaton model. This model can be viewed
as a variant of the Nagel-Schreckenberg model in which the cars do not have a
velocity memory. It is also exactly solvable and the fundamental diagram is
calculated.Comment: Latex, 13 pages including 3 ps-figure
Resonant tunneling diodes as sources for millimeter and submillimeter wavelengths
High-quality Resonant Tunneling Diodes have been fabricated and tested as sources for millimeter and submillimeter wavelengths. The devices have shown excellent I-V characteristics with peak-to-valley current ratios as high as 6:1 and current densities in the range of 50-150 kA/cm(exp 2) at 300 K. Used as local oscillators, the diodes are capable of state of the art output power delivered by AlGaAs-based tunneling devices. As harmonic multipliers, a frequency of 320 GHz has been achieved by quintupling the fundamental oscillation of a klystron source
The local electronic structure of alpha-Li3N
New theoretical and experimental investigation of the occupied and unoccupied
local electronic density of states (DOS) are reported for alpha-Li3N. Band
structure and density functional theory calculations confirm the absence of
covalent bonding character. However, real-space full-multiple-scattering
(RSFMS) calculations of the occupied local DOS finds less extreme nominal
valences than have previously been proposed. Nonresonant inelastic x-ray
scattering (NRIXS), RSFMS calculations, and calculations based on the
Bethe-Salpeter equation are used to characterize the unoccupied electronic
final states local to both the Li and N sites. There is good agreement between
experiment and theory. Throughout the Li 1s near-edge region, both experiment
and theory find strong similarities in the s- and p-type components of the
unoccupied local final density of states projected onto an orbital angular
momentum basis (l-DOS). An unexpected, significant correspondence exists
between the near-edge spectra for the Li 1s and N 1s initial states. We argue
that both spectra are sampling essentially the same final density of states due
to the combination of long core-hole lifetimes, long photoelectron lifetimes,
and the fact that orbital angular momentum is the same for all relevant initial
states. Such considerations may be generically applicable for low atomic number
compounds.Comment: 34 pages, 7 figures, 1 tabl
Monte Carlo simulations of fluid vesicles with in plane orientational ordering
We present a method for simulating fluid vesicles with in-plane orientational
ordering. The method involves computation of local curvature tensor and
parallel transport of the orientational field on a randomly triangulated
surface. It is shown that the model reproduces the known equilibrium
conformation of fluid membranes and work well for a large range of bending
rigidities. Introduction of nematic ordering leads to stiffening of the
membrane. Nematic ordering can also result in anisotropic rigidity on the
surface leading to formation of membrane tubes.Comment: 11 Pages, 12 Figures, To appear in Phys. Rev.
The Phase Diagram of Random Heteropolymers
We propose a new analytic approach to study the phase diagram of random
heteropolymers, based on the cavity method. For copolymers we analyze the
nature and phenomenology of the glass transition as a function of sequence
correlations. Depending on these correlations, we find that two different
scenarios for the glass transition can occur. We show that, beside the much
studied possibility of an abrupt freezing transition at low temperature, the
system can exhibit, upon cooling, a first transition to a soft glass phase with
fully broken replica symmetry and a continuously growing degree of freezing as
the temperature is lowered.Comment: 4 pages, 3 figures; published versio
Production Mechanism for Quark Gluon Plasma in Heavy Ion Collisions
A general scheme is proposed here to describe the production of semi soft and
soft quarks and gluons that form the bulk of the plasma in ultra relativistic
heavy ion collisions. We show how to obtain rates as a function of time in a
self consistent manner, without any ad-hoc assumption. All the required
features - the dynamical nature of QCD vacuum, the non-Markovian nature of the
production, and quasi particle nature of the partons, and the importance of
quantum interference effects are naturally incorporated. We illustrate the
results with a realistic albeit toy model and show how almost all the currently
employed source terms are unreliable in their predictions. We show the rates in
the momentum space and indicate at the end how to extract the full phase-space
dependence.Comment: 4 pages, 4 figures, two colum
A theorem on the absence of phase transitions in one-dimensional growth models with onsite periodic potentials
We rigorously prove that a wide class of one-dimensional growth models with
onsite periodic potential, such as the discrete sine-Gordon model, have no
phase transition at any temperature . The proof relies on the spectral
analysis of the transfer operator associated to the models. We show that this
operator is Hilbert-Schmidt and that its maximum eigenvalue is an analytic
function of temperature.Comment: 6 pages, no figures, submitted to J Phys A: Math Ge
- …