14 research outputs found

    Music meets robotics : a prospective randomized study on motivation during robot aided therapy

    Get PDF
    Robots have been successfully applied in motor training during neurorehabilitation. As music is known to improve motor function and motivation in neurorehabilitation training, we aimed at integrating music creation into robotic-assisted motor therapy. We developed a virtual game-like environment with music for the arm therapy robot ARMin, containing four different motion training conditions: a condition promoting creativity (C+) and one not promoting creativity (C-), each in a condition with (V+) and without (V-) a visual display (i.e., a monitor). The visual display was presenting the game workspace but not contributing to the creative process itself. In all four conditions the therapy robot haptically displayed the game workspace. Our aim was to asses the effects of creativity and visual display on motivation

    High User Control in Game Design Elements Increases Compliance and In-game Performance in a Memory Training Game

    No full text
    Computer games are increasingly being used for training cognitive functions like working memory and attention among the growing population of older adults. While cognitive training games often include elements like difficulty adaptation, rewards, and visual themes to make the games more enjoyable and effective, the effect of different degrees of afforded user control in manipulating these elements has not been systematically studied. To address this issue, two distinct implementations of the three aforementioned game elements were tested among healthy older adults (N = 21, 69.9 ± 6.4 years old) playing a game-like version of the n-back task on a tablet at home for 3 weeks. Two modes were considered, differentiated by the afforded degree of user control of the three elements: user control of difficulty vs. automatic difficulty adaptation, difficulty-dependent rewards vs. automatic feedback messages, and user choice of visual theme vs. no choice. The two modes (“USER-CONTROL” and “AUTO”) were compared for frequency of play, duration of play, and in-game performance. Participants were free to play the game whenever and for however long they wished. Participants in USER-CONTROL exhibited significantly higher frequency of playing, total play duration, and in-game performance than participants in AUTO. The results of the present study demonstrate the efficacy of providing user control in the three game elements, while validating a home-based study design in which participants were not bound by any training regimen, and could play the game whenever they wished. The results have implications for designing cognitive training games that elicit higher compliance and better in-game performance, with an emphasis on home-based training.ISSN:1664-107

    Can Two-Player Games Increase Motivation in Rehabilitation Robotics?

    Full text link

    The effect of different difficulty adaptation strategies on enjoyment and performance in a serious game for memory training

    Full text link
    Objective: The goal of this study was to evaluate two kinds of difficulty adaptation techniques in terms of enjoyment and performance in a simple memory training game: one based on difficulty-performance matching (“task-guided”) and the other based on providing a high degree of control/choice (“user-guided”). Methods: Performance and enjoyment are both critical in making serious games effective. Therefore the adaptations were based on two different approaches that are used to sustain performance and enjoyment in serious games: 1) adapting task difficulty to match user performance by leveraging the theories of zone of proximal development and flow, thus maximizing performance that can then lead to increased enjoyment and 2) providing a high degree of control and choice by using constructs from self-determination theory, which maximizes enjoyment, that can potentially increase performance. 24 participants played a simple memory training serious game in a fully randomized, repeated measures design. The primary outcome measures were enjoyment and performance. Results: Enjoyment was significantly greater in user-guided (p < 0.05), whereas performance was significantly greater in task-guided (p < 0.05). Conclusion: The results suggest that a trade-off between maximizing performance and maximizing enjoyment could be achieved by combining the two approaches into a “hybrid” adaptation mode that gives users a high degree of control in setting difficulty, but also advises them about optimizing performance

    The use of player-centered positive reinforcement to schedule in-game rewards inreases enjoyment and performance in a serious game

    Get PDF
    Among the methods used to increase enjoyment and performance in serious games, reward schedules, i.e., determining when in-game rewards should be given, have not been sufficiently explored. In the present study, we designed a simple memory training serious game and compared two methods of scheduling rewards, both based on the paradigm of positive reinforcement: fixed ratio schedule, in which rewards were given after a fixed number of correct responses, and variable ratio schedule, in which rewards were given after an unpredictable number of correct responses. To account for the variability in player preference for rewards, a player-centered sub-mode was included in both schedules by adjusting the schedule ratio according to player preference for rewards. The effectiveness of this approach was tested by comparing it against two more sub-modes: one which used a predetermined ratio, and another which set the ratio to the opposite of player preference. The game was put online and tested with 210 participants. Enjoyment, performance, duration of gameplay, and likelihood to play again were significantly higher in the player-centered sub-mode than the other sub-modes. On average, the variable-ratio schedule was better in the outcome measures than the fixed-ratio schedule. The results highlight the importance of in-game rewards, and indicate that giving rewards according to a player-centered variable-ratio schedule has the potential to make serious games more effective

    Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay

    Get PDF
    Background Several strategies have been proposed to improve patient motivation and exercise intensity during robot-aided stroke rehabilitation. One relatively unexplored possibility is two-player gameplay, allowing subjects to compete or cooperate with each other to achieve a common goal. In order to explore the potential of such games, we designed a two-player game played using two ARMin arm rehabilitation robots. Methods The game was an air-hockey task displayed on a computer monitor and controlled using shoulder movements in the ARMin robot. Three game modes were tested: single-player (competing against computer), competitive (competing against human), and cooperative (cooperating with human against computer). All modes were played by 30 unimpaired subjects and 8 impaired chronic stroke subjects. The subjects filled out the Intrinsic Motivation Inventory questionnaire after each game mode, as well as a final questionnaire about game preferences and their personality. Results Nearly all unimpaired subjects preferred playing the two-player game modes to the single-player one, as they enjoyed talking and interacting with another person. However, there were two distinct player groups: one liked the competitive mode but not the cooperative mode while the other liked the cooperative but not the competitive mode. Unimpaired subjects who liked the competitive mode also put significantly more effort into it than into the other modes. Results from impaired subjects were similar, with even impaired subjects over 60 years old enjoying competitive gameplay. The subjects’ personalities roughly predicted which mode they would prefer, which was especially evident in a poorly-matched impaired pair that preferred the single-player mode. Conclusions Results indicate great potential for two-player rehabilitation games, in the form of greater enjoyment as well as potentially more intensive exercise compared to single-player games. However, the right game type needs to be chosen for each subject depending on skill and personality, along with selecting an appropriate co-player. Further studies with patients that are currently enrolled in rehabilitation programs are recommended, and the subjective measures used in our study should be augmented with objective measures such as electromyography.ISSN:1743-000

    Music meets robotics: a prospective randomized study on motivation during robot aided therapy

    Get PDF
    BACKGROUND Robots have been successfully applied in motor training during neurorehabilitation. As music is known to improve motor function and motivation in neurorehabilitation training, we aimed at integrating music creation into robotic-assisted motor therapy. We developed a virtual game-like environment with music for the arm therapy robot ARMin, containing four different motion training conditions: a condition promoting creativity (C+) and one not promoting creativity (C-), each in a condition with (V+) and without (V-) a visual display (i.e., a monitor). The visual display was presenting the game workspace but not contributing to the creative process itself. In all four conditions the therapy robot haptically displayed the game workspace. Our aim was to asses the effects of creativity and visual display on motivation. METHODS In a prospective randomized single-center study, healthy participants were randomly assigned to play two of the four training conditions, either with (V+) or without visual display (V-). In the third round, the participants played a repetition of the preferred condition of the two first rounds, this time with a new V condition (i.e., with or without visual display). For each of the three rounds, motivation was measured with the Intrinsic Motivation Inventory (IMI) in the subscales interest/enjoyment, perceived choice, value/usefulness, and man-machine-relation. We recorded the actual training time, the time of free movement, and the velocity profile and administered a questionnaire to measure perceived training time and perceived effort. All measures were analysed using linear mixed models. Furthermore, we asked if the participants would like to receive the created music piece. RESULTS Sixteen healthy subjects (ten males, six females, mean age: 27.2 years, standard deviation: 4.1 years) with no known motor or cognitive deficit participated. Promotion of creativity (i.e., C+ instead of C-) significantly increased the IMI-item interest/enjoyment (p=0.001) and the IMI-item perceived choice (p=0.010). We found no significant effects in the IMI-items man-machine relation and value/usefulness. Conditions promoting creativity (with or without visual display) were preferred compared to the ones not promoting creativity. An interaction effect of promotion of creativity and omission of visual display was present for training time (p=0.013) and training intensity (p<0.001). No differences in relative perceived training time, perceived effort, and perceived value among the four training conditions were found. CONCLUSIONS Promoting creativity in a visuo-audio-haptic or audio-haptic environment increases motivation in robot-assisted therapy. We demonstrated the feasibility of performing an audio-haptic music creation task and recommend to try the system on patients with neuromuscular disorders. TRIAL REGISTRATION ClinicalTrials.gov, NCT02720341. Registered 25 March 2016, https://clinicaltrials.gov/ct2/show/NCT02720341

    Music meets robotics: A prospective randomized study on motivation during robot aided therapy

    No full text
    Background Robots have been successfully applied in motor training during neurorehabilitation. As music is known to improve motor function and motivation in neurorehabilitation training, we aimed at integrating music creation into robotic-assisted motor therapy. We developed a virtual game-like environment with music for the arm therapy robot ARMin, containing four different motion training conditions: a condition promoting creativity (C+) and one not promoting creativity (C–), each in a condition with (V+) and without (V–) a visual display (i.e., a monitor). The visual display was presenting the game workspace but not contributing to the creative process itself. In all four conditions the therapy robot haptically displayed the game workspace. Our aim was to asses the effects of creativity and visual display on motivation. Methods In a prospective randomized single-center study, healthy participants were randomly assigned to play two of the four training conditions, either with (V+) or without visual display (V–). In the third round, the participants played a repetition of the preferred condition of the two first rounds, this time with a new V condition (i.e., with or without visual display). For each of the three rounds, motivation was measured with the Intrinsic Motivation Inventory (IMI) in the subscales interest/enjoyment, perceived choice, value/usefulness, and man-machine-relation. We recorded the actual training time, the time of free movement, and the velocity profile and administered a questionnaire to measure perceived training time and perceived effort. All measures were analysed using linear mixed models. Furthermore, we asked if the participants would like to receive the created music piece. Results Sixteen healthy subjects (ten males, six females, mean age: 27.2 years, standard deviation: 4.1 years) with no known motor or cognitive deficit participated. Promotion of creativity (i.e., C+ instead of C–) significantly increased the IMI-item interest/enjoyment (p=0.001) and the IMI-item perceived choice (p=0.010). We found no significant effects in the IMI-items man-machine relation and value/usefulness. Conditions promoting creativity (with or without visual display) were preferred compared to the ones not promoting creativity. An interaction effect of promotion of creativity and omission of visual display was present for training time (p=0.013) and training intensity (p<0.001). No differences in relative perceived training time, perceived effort, and perceived value among the four training conditions were found. Conclusions Promoting creativity in a visuo-audio-haptic or audio-haptic environment increases motivation in robot-assisted therapy. We demonstrated the feasibility of performing an audio-haptic music creation task and recommend to try the system on patients with neuromuscular disorders.ISSN:1743-000
    corecore