6 research outputs found

    The implication of the crosstalk of Nrf2 with NOXs, and HMGB1 in ethanol-induced gastric ulcer: Potential protective effect is afforded by Raspberry Ketone.

    No full text
    Ethanol consumption is one of the common causative agents implicated in gastric ulcer development. Oxidative stress plays a major role in the induction and development of gastric ulceration. NADPH oxidases (NOXs) and Nuclear factor erythroid 2-related factor 2 (Nrf2) are key players in ethanol-induced ulcers. High-mobility group box 1 (HMGB1), a ubiquitous nuclear protein, mediates various inflammation functions. However, the role of HMGB1 in ethanol-induced gastric ulcer is not yet elucidated. Raspberry Ketone (RK) is a natural phenolic compound with antioxidant and anti-inflammatory properties. In the present study, absolute ethanol (7.5 ml/kg) was used to induce gastric ulceration in rats. Raspberry Ketone (RK) (50 mg/kg) was given orally one hour before the administration of absolute ethanol. Interestingly, ethanol-induced gastric ulcer was associated with Nrf2 downregulation, which was correlated with NOX-1, 2 NOX-4, and HMGB1 upregulation, and was significantly reversed by RK pre-treatment. RK pre-treatment provided 80% gastroprotection. Gastroprotective properties of RK were mediated via antioxidant, anti-inflammatory (suppression of NF-kB and tumor necrosis factor-α), and antiapoptotic activities (reduction of Bax/Bcl2 ratio). Gastroprotective properties of RK were confirmed by histopathological examination. In conclusion, this study is the first to provide evidence to the role of HMGB1 in ethanol-induced gastric ulcer, and the crosstalk of Nrf2, NOXs and HMGB1. It also demonstrates that RK represents a promising gastroprotective activity comparable to omeprazole

    Role of N-Acetylcysteine and Coenzyme Q10 in the Amelioration of Myocardial Energy Expenditure and Oxidative Stress, Induced by Carbon Tetrachloride Intoxication in Rats

    No full text
    This study is designed to evaluate the potential impact of N-acetyl cysteine (NAC) and coenzyme Q10 (CoQ10) each alone or in combination against carbon tetrachloride (CCl 4 )-induced cardiac damage in rats. Animals were treated with CCl 4 in single intraperitoneal dose of 1 mL/Kg body weight; CCl 4 -intoxicated animals were pretreated with 20 mg/kg/d NAC or pretreated with 200 mg/kg/d CoQ10 or NAC and CoQ10 with the same previously mentioned doses. Carbon tetrachloride–intoxicated rats showed a significant elevation in nitric oxide and lipid peroxides and downregulation in reduced glutathione level and calcium adenosine triphosphatase. Cardiac glycolytic enzymes levels such as lactate dehydrogenase, phosphofructokinase, and hexokinase were declined coupled with a reduction in glucose content after CCl 4 treatment. Moreover, myocardial hydroxyproline level was significantly increased after CCl 4 -treatment indicating accumulation of interstitial collagen. N-acetyl cysteine and/or CoQ10 effectively alleviated the disturbances in myocardial oxidative stress and antioxidant markers. These antioxidants effectively upregulated the reduction in cardiac energetic biomarkers due to CCl 4 treatment. N-acetyl cysteine and/or CoQ10 significantly decreased hydroxyproline level compared to that of CCl 4 -treated rats. The current data showed that the aforementioned antioxidants have a remarkable cardioprotective effect, suggesting that they may be useful as prophylactic agents against the detrimental effects of cardiotoxins

    Arctium lappa Root Extract Prevents Lead-Induced Liver Injury by Attenuating Oxidative Stress and Inflammation, and Activating Akt/GSK-3β Signaling

    No full text
    Arctium lappa L. (A. lappa) is a popular medicinal plant with promising hepatoprotective activity. This study investigated the protective effect of A. lappa root extract (ALRE) on lead (Pb) hepatotoxicity, pointing to its ability to modulate oxidative stress, inflammation, and protein kinase B/Akt/glycogen synthase kinase (GSK)-3β signaling. Rats received 50 mg/kg lead acetate (Pb(Ac)2) and 200 mg/kg ALRE or vitamin C (Vit. C) for 7 days, and blood and liver samples were collected. Pb(Ac)2 provoked hepatotoxicity manifested by elevated serum transaminases and lactate dehydrogenase, and decreased total protein. Histopathological alterations, including distorted lobular hepatic architecture, microsteatotic changes, congestion, and massive necrosis were observed in Pb(II)-induced rats. ALRE ameliorated liver function and prevented all histological alterations. Pb(II) increased hepatic lipid peroxidation (LPO), nitric oxide (NO), caspase-3, and DNA fragmentation, and serum C-reactive protein, tumor necrosis factor-α, and interleukin-1β. Cellular antioxidants, and Akt and GSK-3β phosphorylation levels were decreased in the liver of Pb(II)-induced rats. ALRE ameliorated LPO, NO, caspase-3, DNA fragmentation and inflammatory mediators, and boosted antioxidant defenses in Pb(II)-induced rats. In addition, ALRE activated Akt and inhibited GSK-3β in the liver of Pb(II)-induced rats. In conclusion, ALRE inhibits liver injury in Pb(II)-intoxicated rats by attenuating oxidative injury and inflammation, and activation of Akt/GSK-3β signaling pathway
    corecore