14 research outputs found

    Epigenetics and triplet-repeat neurological diseases

    Get PDF
    The term ‘junk DNA’ has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterchromatinised resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide and tetranucleotide repeats. The association between repetitive regions and disease was emphasised following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy’s disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases

    F2move: fMRI-compatible haptic object manipulation system for closed-loop motor control studies

    No full text
    Functional neuroimaging plays a key role in addressing open questions in systems and motor neuroscience directly applicable to brain machine interfaces. Building on our low-cost motion capture technology (fMOVE), we developed f2MOVE, an fMRI-compatible system for 6DOF goal-directed hand and wrist movements of human subjects enabling closed-loop sensorimotor haptic experiments with simultaneous neuroimaging. f2MOVE uses a high-zoom lens high frame rate camera and a motion tracking algorithm that tracks in real-time the position of special markers attached to a hand-held object in a novel customized haptic interface. The system operates with high update rate (120 Hz) and sufficiently low time delays (<; 20 ms) to enable visual feedback while complex, goal-oriented movements are recorded. We present here both the accuracy of our motion tracking against a reference signal and the efficacy of the system to evoke motor control specific brain activations in healthy subjects. Our technology and approach thus support the real-time, closed-loop study of the neural foundations of complex haptic motor tasks using neuroimaging

    Transcriptional activation of pericentromeric satellite repeats and disruption of centromeric clustering upon proteasome inhibition

    No full text
    Heterochromatinisation of pericentromeres, which in mice consist of arrays of major satellite repeats, are important for centromere formation and maintenance of genome stability. The dysregulation of this process has been linked to genomic stress and various cancers. Here we show in mice that the proteasome binds to major satellite repeats and proteasome inhibition by MG132 results in their transcriptional de-repression; this de-repression is independent of cell-cycle perturbation. The transcriptional activation of major satellite repeats upon proteasome inhibition is accompanied by delocalisation of heterochromatin protein 1 alpha (HP1α) from chromocentres, without detectable change in the levels of histone H3K9me3, H3K4me3, H3K36me3 and H3 acetylation on the major satellite repeats. Moreover, inhibition of the proteasome was found to increase the number of chromocentres per cell, reflecting destabilisation of the chromocentre structures. Our findings suggest that the proteasome plays a role in maintaining heterochromatin integrity of pericentromeres

    A wearable motion capture suit and machine learning predict disease progression in Friedreich's ataxia.

    Get PDF
    Friedreich's ataxia (FA) is caused by a variant of the Frataxin (FXN) gene, leading to its downregulation and progressively impaired cardiac and neurological function. Current gold-standard clinical scales use simplistic behavioral assessments, which require 18- to 24-month-long trials to determine if therapies are beneficial. Here we captured full-body movement kinematics from patients with wearable sensors, enabling us to define digital behavioral features based on the data from nine FA patients (six females and three males) and nine age- and sex-matched controls, who performed the 8-m walk (8-MW) test and 9-hole peg test (9 HPT). We used machine learning to combine these features to longitudinally predict the clinical scores of the FA patients, and compared these with two standard clinical assessments, Spinocerebellar Ataxia Functional Index (SCAFI) and Scale for the Assessment and Rating of Ataxia (SARA). The digital behavioral features enabled longitudinal predictions of personal SARA and SCAFI scores 9 months into the future and were 1.7 and 4 times more precise than longitudinal predictions using only SARA and SCAFI scores, respectively. Unlike the two clinical scales, the digital behavioral features accurately predicted FXN gene expression levels for each FA patient in a cross-sectional manner. Our work demonstrates how data-derived wearable biomarkers can track personal disease trajectories and indicates the potential of such biomarkers for substantially reducing the duration or size of clinical trials testing disease-modifying therapies and for enabling behavioral transcriptomics

    PREDICT-PD: Identifying risk of Parkinson's disease in the community: methods and baseline results

    Get PDF
    To present methods and baseline results for an online screening tool to identify increased risk for Parkinson's disease (PD) in the UK population

    Vaccine-induced, but not natural immunity, against the Streptococcal inhibitor of complement protects against invasive disease

    Get PDF
    Highly pathogenic emm1 Streptococcus pyogenes strains secrete the multidomain Streptococcal inhibitor of complement (SIC) that binds and inactivates components of the innate immune response. We aimed to determine if naturally occurring or vaccine-induced antibodies to SIC are protective against invasive S. pyogenes infection. Immunisation with full-length SIC protected mice against systemic bacterial dissemination following intranasal or intramuscular infection with emm1 S. pyogenes. Vaccine-induced rabbit anti-SIC antibodies, but not naturally occurring human anti-SIC antibodies, enhanced bacterial clearance in an ex vivo whole-blood assay. SIC vaccination of both mice and rabbits resulted in antibody recognition of all domains of SIC, whereas naturally occurring human anti-SIC antibodies recognised the proline-rich region of SIC only. We, therefore, propose a model whereby natural infection with S. pyogenes generates non-protective antibodies against the proline-rich region of SIC, while vaccination with full-length SIC permits the development of protective antibodies against all SIC domains

    PREDICT-PD: Identifying risk of Parkinson's disease in the community: methods and baseline results

    Get PDF
    This work was supported by Parkinson’s UK (Innovation Grant reference number K-1006: £35 000)
    corecore