15 research outputs found

    Pesticide use under the influence of socio-economic and climate change: Pest-Agri-SSPs

    Get PDF
    Pesticide use is a crucial human-driven change in the Anthropocene that negatively impacts the environment and ecosystems. While pesticides are essential to agriculture to sustain crop production and ensure global food security, they also lead to significant environmental impacts. The export of pesticides after application from the agricultural fields threatens the soil, groundwater and surface water quality in many world regions. Pesticide use is constantly increasing globally, driven mainly by agricultural intensification, despite stricter regulations and higher pesticide effectiveness. To enhance the understanding of future pesticide use and emissions and make informed farm-to-policy decisions, we developed Pesticide Agricultural Shared Socio-Economic Pathways (Pest-Agri-SSPs) in six steps. The Pest-Agri-SSPs are based on an extensive literature review and expert knowledge, considering significant climate and socio-economic drivers from farm to continental scale in combination with multiple actors impacting them. In the literature, pesticide use is associated with farmer behaviour and agricultural practices, pest damage, technique and efficiency of pesticide application, agricultural policy and demand for agricultural products. Here, we developed Pest-Agri-SSPs upon this understanding of pesticide use drivers and relating them to plausible sectoral developments, as described by the Shared Socio-economic Pathways for European agriculture and food systems (Eur-Agri-SSPs). The Pest-Agri-SSPs present European pesticide use in five scenarios with low to high challenges to climate change adaptation and mitigation up to 2050. The most sustainable scenario (Pest-Agri-SSP1) shows a decrease in pesticide use owing to sustainable agricultural practices, technological advances and a pro-environmental orientation of agricultural policies. On the contrary, the Pest-Agri-SSP3 and Pest-Agri-SSP4 show an increase in pesticide use resulting from high challenges from pest pressure, resource depletion and relaxed agricultural policies. Pest-Agri-SSP2 presents a stabilised pesticide use resulting from strict policies and slow transitions by farmers to sustainable agricultural practices. Pest-Agri-SSP5 shows a decrease in pesticide use for most drivers, influenced mainly by rapid technological development and the application of sustainable agricultural practices. However, Pest-Agri-SSP5 also shows a relatively low rise in pesticide use driven by agricultural demand, production, and climate change. Our results highlight the need for a holistic approach to tackle pesticide use and emissions, considering the identified drivers and future developments. The storylines and qualitative assessment provide a platform to make quantitative assumptions for numerical modelling and evaluating policy targets

    Development of chemical emission scenarios using the Shared Socio-economic Pathways

    Get PDF
    The widespread use of chemicals has led to significant water quality concerns, and their use is still increasing. Hence, there is an urgent need to understand the possible future trends in chemical emissions to water systems. This paper proposes a general framework for developing emission scenarios for chemicals to water using the Shared Socio-economic Pathways (SSPs) based on an emission-factor approach. The proposed approach involves three steps: (i) identification of the main drivers of emissions, (ii) quantification of emission factors based on analysis of publicly available data, and (iii) projection of emissions based on projected changes in the drivers and emission factors. The approach was tested in Europe for five chemical groups and on a national scale for five specific chemicals representing pharmaceuticals, pesticides, and industrial chemicals. The resulting emission scenarios show widely diverging trends of increased emissions by 240% for ibuprofen in SSP3 (regional rivalry) to a 68% decrease for diclofenac in SSP1 (sustainable development) by 2050. While emissions typically decrease in SSP1, they follow the historical trend in SSP2 (middle-of-the-road scenario) and show an increase in the regional rivalry scenario SSP3 for most selected chemicals. Overall, the framework allows understanding of future chemical emissions trends as a function of the socio-economic trends as captured in the SSPs. Our scenarios for chemical emissions can thus be used to model future aqueous emissions to support risk assessment. While the framework can be easily extended to other pharmaceuticals and pesticides, it heavily leans on the availability and quality of historical emission data and a detailed understanding of emission sources for industrial chemicals

    Extending shared socio-economic pathways for pesticide use in Europe: Pest-Agri-SSPs

    Get PDF
    While pesticides are essential to agriculture and food systems to sustain current production levels, they also lead to significant environmental impacts. The use of pesticides is constantly increasing globally, driven mainly by a further intensification of agriculture, despite stricter regulations and higher pesticide effectiveness. To further the understanding of future pesticide use and make informed farm-to-policy decisions, we developed Pesticide Agricultural Shared Socio-economic Pathways (Pest-AgriSSPs) in six steps. The Pest-Agri-SSPs are developed based on an extensive literature review and expert feedback approach considering significant climate and socio-economic drivers from farm to continental scale in combination with multiple actors impacting them. In literature, pesticide use is associated with farmer behaviour and practices, pest damage, technique and efficiency of pesticide application, agricultural policy and agriculture demand and production. Here, we developed PestAgri-SSPs upon this understanding of pesticide use drivers and relating them to possible agriculture development as described by the Shared Socio-economic Pathways for European agriculture and food systems (Eur-Agri-SSPs).The Pest-AgriSSPs are developed to explore European pesticide use in five scenarios representing low to high challenges to mitigation and adaptation up to 2050. The most sustainable scenario (Pest-Agri-SSP1) shows a decrease in pesticide use owing to sustainable agricultural practices, technological advances and better implementation of agricultural policies. On the contrary, the Pest-Agri-SSP3 and Pest-Agri-SSP4 show a higher increase in pesticide use resulting from higher challenges from pest pressure, resource depletion and relaxed agricultural policies. Pest-Agri-SSP2 presents a stabilised pesticide use resulting from stricter policies and slow transitions by farmers to sustainable agricultural practices. At the same time, pest pressure, climate change and food demand pose serious challenges. Pest-Agri-SSP5 shows a decrease in pesticide use for most drivers, influenced mainly by rapid technological development and sustainable agricultural practices. However, Pest-Agri-SSP5 also presents a relatively low rise in pesticide use driven by agricultural demand, production, and climate change. Our results highlight the need for a holistic approach to tackle pesticide use, considering the identified drivers and future developments. The storylines and qualitative assessment provide a platform to make quantitative assumptions for numerical modelling and evaluating policy targets

    A shared socio-economic pathway based framework for characterising future emissions of chemicals to the natural environment

    Get PDF
    Chemicals are used in all aspects of our lives and are either intentionally or unintentionally released into the natural environment, leading to chemical pollution which negatively effects biodiversity and ecosystem and human health. The world is going through socio-economic, climate and technological changes that will affect chemical emissions to the natural environment but the extent of these affects is unknown. Scenarios of future chemical emissions are therefore needed to inform research and policy decisions to protect the health of humans and ecosystems into the future. In this article, we present a framework, based on Shared Socio-economics Pathways (SSPs) in combination with Representative concentration pathways (RCPs), to develop future chemical environmental emissions scenarios for single molecules or groups of chemicals sharing similar features. The framework has 4 steps: 1) determination of the characteristics of the scenario; 2) review and prioritisation of socio-economics and climate drivers; 3) development of scenarios; and 4) consistency checks. The framework is demonstrated for antidepressant and insecticide emissions into European freshwater-systems in 2050. Output narratives provide multiple pathways of chemical emissions in the future and can be used by researchers, regulators, politicians, governments, and the private sector to develop mitigation and adaptation strategies to chemical pollution issue

    Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India

    Get PDF
    Globally, cancer is a constant battle which severely affects the human population. The major limitations of the anticancer drugs are the deleterious side effects on the quality of life. Plants play a vital role in curing many diseases with minimal or no side effects. Phytocompounds derived from various medicinal plants serve as the best source of drugs to treat cancer. The global demand for phytomedicines is mostly reached by the medicinal herbs from the tropical nations of the world even though many plant species are threatened with extinction. India is one of the mega diverse countries of the world due to its ecological habitats, latitudinal variation, and diverse climatic range. Western Ghats of India is one of the most important depositories of endemic herbs. It is found along the stretch of south western part of India and constitutes rain forest with more than 4000 diverse medicinal plant species. In recent times, many of these therapeutically valued herbs have become endangered and are being included under the red-listed plant category in this region. Due to a sharp rise in the demand for plant-based products, this rich collection is diminishing at an alarming rate that eventually triggered dangerous to biodiversity. Thus, conservation of the endangered medicinal plants has become a matter of importance. The conservation by using only in situ approaches may not be sufficient enough to safeguard such a huge bio-resource of endangered medicinal plants. Hence, the use of biotechnological methods would be vital to complement the ex vitro protection programs and help to reestablish endangered plant species. In this backdrop, the key tools of biotechnology that could assist plant conservation were developed in terms of in vitro regeneration, seed banking, DNA storage, pollen storage, germplasm storage, gene bank (field gene banking), tissue bank, and cryopreservation. In this chapter, an attempt has been made to critically review major endangered medicinal plants that possess anticancer compounds and their conservation aspects by integrating various biotechnological tool

    ECORISK2050: An Innovative Training Network for predicting the effects of global change on the emission, fate, effects, and risks of chemicals in aquatic ecosystems

    Get PDF
    By 2050, the global population is predicted to reach nine billion, with almost three quarters living in cities. The road to 2050 will be marked by changes in land use, climate, and the management of water and food across the world. These global changes (GCs) will likely affect the emissions, transport, and fate of chemicals, and thus the exposure of the natural environment to chemicals. ECORISK2050 is a Marie Skłodowska-Curie Innovative Training Network that brings together an interdisciplinary consortium of academic, industry and governmental partners to deliver a new generation of scientists, with the skills required to study and manage the effects of GCs on chemical risks to the aquatic environment. The research and training goals are to: (1) assess how inputs and behaviour of chemicals from agriculture and urban environments are affected by different environmental conditions, and how different GC scenarios will drive changes in chemical risks to human and ecosystem health; (2) identify short-to-medium term adaptation and mitigation strategies, to abate unacceptable increases to risks, and (3) develop tools for use by industry and policymakers for the assessment and management of the impacts of GC-related drivers on chemical risks. This project will deliver the next generation of scientists, consultants, and industry and governmental decision-makers who have the knowledge and skillsets required to address the changing pressures associated with chemicals emitted by agricultural and urban activities, on aquatic systems on the path to 2050 and beyond

    Modelling the impacts of climate and socio-economic changes on pesticide use and fate

    Get PDF
    Agricultural use of pesticides helps control a range of pests and diseases that threaten crops, thereby avoiding yield losses and improving the quality of the food produced. However, pesticides applied on agricultural fields dissipate with time. The export of pesticides and their transformation products after application from the agricultural fields threatens the water quality of aquatic systems in many world regions. Climate change is further expected to intensify pest pressures and potential pesticide use by affecting agriculture in many ways. Changing climatic conditions can increase pesticide leaching due to increased and frequent rainfall, higher degradation rates, or higher temperatures or soil moisture contents. The indirect effects are changes in land use, the timing of crop cultivation, selection of other crop types, new pests and changed pest behaviour, etc. Additionally, several socio-economic factors influence pesticide use at the farm and national level, including regulation and legislation, economy, technology and crop characteristics. In order to better understand the pesticide risk to surface waters in the future, we aim to understand the influence of both climate and socio-economic change on pesticide use and fate. Various catchment-scale models are available to assess pesticides and their impacts on water bodies. However, most modelling approaches solely concentrate on the total amount or concentration of pesticide exported from a catchment and do not necessarily analyse the future change of pesticide and transformation products. We propose an integrated modelling framework to answer the research questions: What are the current significant climate and socio-economic drivers influencing pesticide use and emissions? How can climate change influence pesticide and transformation products emission trends? How will socio-economic change influence pesticide emissions? The integrated modelling framework helps to include adapting agricultural production to climatic (e.g., temperature, precipitation) and socio-economic drivers (e.g., land use, crop type, pesticide regulation) and quantifying pesticide emissions with the Zin-AgriTRA pesticide fate model. The ZIN-AgriTra is a catchment scale reactive transport model which can simulate agrochemical and transformation products exported from agricultural catchments. We use the Eur-Agri-SSP scenarios that extend and enrich the basic Shared Socio-economic Pathways with a regional and sectoral component on agriculture to explain the socio-economic change and climate projections for Representative concentration pathways to adopt climate change scenarios. The integrated modelling framework links the future scenario results from independent, standalone models that present crop rotation, land use, pesticide regulation and climate to the pesticide fate model (Zin-AgriTRA). The framework is applied to an agricultural catchment in Burgenland, Austria, to quantify pesticide pollution under future climate and socio-economic change up to 2050

    Modelling the impacts of climate and socio-economic changes on pesticide use and fate

    Get PDF
    Agricultural use of pesticides helps control a range of pests and diseases that threaten crops, thereby avoiding yield losses and improving the quality of the food produced. However, pesticides applied on agricultural fields dissipate with time. The export of pesticides and their transformation products after application from the agricultural fields threatens the water quality of aquatic systems in many world regions. Climate change is further expected to intensify pest pressures and potential pesticide use by affecting agriculture in many ways. Changing climatic conditions can increase pesticide leaching due to increased and frequent rainfall, higher degradation rates, or higher temperatures or soil moisture contents. The indirect effects are changes in land use, the timing of crop cultivation, selection of other crop types, new pests and changed pest behaviour, etc. Additionally, several socio-economic factors influence pesticide use at the farm and national level, including regulation and legislation, economy, technology and crop characteristics. In order to better understand the pesticide risk to surface waters in the future, we aim to understand the influence of both climate and socio-economic change on pesticide use and fate. Various catchment-scale models are available to assess pesticides and their impacts on water bodies. However, most modelling approaches solely concentrate on the total amount or concentration of pesticide exported from a catchment and do not necessarily analyse the future change of pesticide and transformation products. We propose an integrated modelling framework to answer the research questions: What are the current significant climate and socio-economic drivers influencing pesticide use and emissions? How can climate change influence pesticide and transformation products emission trends? How will socio-economic change influence pesticide emissions? The integrated modelling framework helps to include adapting agricultural production to climatic (e.g., temperature, precipitation) and socio-economic drivers (e.g., land use, crop type, pesticide regulation) and quantifying pesticide emissions with the Zin-AgriTRA pesticide fate model. The ZIN-AgriTra is a catchment scale reactive transport model which can simulate agrochemical and transformation products exported from agricultural catchments. We use the Eur-Agri-SSP scenarios that extend and enrich the basic Shared Socio-economic Pathways with a regional and sectoral component on agriculture to explain the socio-economic change and climate projections for Representative concentration pathways to adopt climate change scenarios. The integrated modelling framework links the future scenario results from independent, standalone models that present crop rotation, land use, pesticide regulation and climate to the pesticide fate model (Zin-AgriTRA). The framework is applied to an agricultural catchment in Burgenland, Austria, to quantify pesticide pollution under future climate and socio-economic change up to 2050

    Development of scenarios for future emissions of chemicals from agricultural, industrial and urban systems

    Get PDF
    Water is an essential resource for human life and the environment. The widespread use of chemicals in daily life has led to significant water quality concerns. During the production phase, the use phase as well as after use, (residues of) these chemicals can enter the environment and water systems. Furthermore, the use and production of chemicals are increasing rapidly, driven by mainly population growth, urbanisation and economic growth. Increased use leads to further emissions of chemicals to water, posing significant water quality concerns. Henceforth there is an urgent need to understand the linkage between society and production and consumption of chemicals to explore possible changes in water quality. Socio-economic scenario analysis is a useful tool to investigate the long-term consequences of future change and mitigation options. While scenarios have been broadly applied to understand air pollution, this not yet the case for chemical pollution to surface waters. In this work, we propose a general framework to develop scenarios for the future emissions of chemicals to water by using the Shared Socio-economic Pathways (SSP). The framework follows the basic elements of the scenario development process by defining the current system, describe the changes in emissions with scenario drivers and elaboration to the future. The framework is then tested on a set of selected ‘example’ chemicals that represent broader chemical groups of pharmaceuticals (Ibuprofen and Diclofenac), pesticides (Terbuthylazine) and industrial chemicals (Cadmium and Di-ethyl phthalate). Chemical emissions to water over the past years were used to understand their yearly trends and patterns over the European countries. Lastly, the emission scenarios for chemicals for 2050 were developed by using SSP drivers from the IMAGE Integrated assessment model as an input to the empirical emission models. The three SSP scenarios: SSP1 ("Sustainability"), SSP2 ("Middle of the Road") and SSP3 ("Regional Rivalry") focusing on Europe were included. Additionally, the developed scenarios also describe mitigation efforts. The results of emission scenarios displayed an increase in emissions up to 2050 for the exemplary chemicals in Western Europe for all three scenarios SSP1, SSP2 and SSP3. While the emissions of chemicals linearly decreased in Eastern Europe for the same period. SSP3 showed the highest emissions in 2050 except for cadmium emissions from wastewater treatment plants. The results showed that the framework helps in understanding the possible influence of socio-economic changes on use and emissions of chemicals which can be a part of future risk assessments. While the framework can be extended similarly to other pharmaceuticals and pesticides, it requires a detailed understanding of complex emission sources for industrial chemicals

    Modelling the impacts of climate and socio-economic changes on pesticide use and fate

    No full text
    Agricultural use of pesticides helps control a range of pests and diseases that threaten crops, thereby avoiding yield losses and improving the quality of the food produced. However, pesticides applied on agricultural fields dissipate with time. The export of pesticides and their transformation products after application from the agricultural fields threatens the water quality of aquatic systems in many world regions. Climate change is further expected to intensify pest pressures and potential pesticide use by affecting agriculture in many ways. Changing climatic conditions can increase pesticide leaching due to increased and frequent rainfall, higher degradation rates, or higher temperatures or soil moisture contents. The indirect effects are changes in land use, the timing of crop cultivation, selection of other crop types, new pests and changed pest behaviour, etc. Additionally, several socio-economic factors influence pesticide use at the farm and national level, including regulation and legislation, economy, technology and crop characteristics. In order to better understand the pesticide risk to surface waters in the future, we aim to understand the influence of both climate and socio-economic change on pesticide use and fate. Various catchment-scale models are available to assess pesticides and their impacts on water bodies. However, most modelling approaches solely concentrate on the total amount or concentration of pesticide exported from a catchment and do not necessarily analyse the future change of pesticide and transformation products. We propose an integrated modelling framework to answer the research questions: What are the current significant climate and socio-economic drivers influencing pesticide use and emissions? How can climate change influence pesticide and transformation products emission trends? How will socio-economic change influence pesticide emissions? The integrated modelling framework helps to include adapting agricultural production to climatic (e.g., temperature, precipitation) and socio-economic drivers (e.g., land use, crop type, pesticide regulation) and quantifying pesticide emissions with the Zin-AgriTRA pesticide fate model. The ZIN-AgriTra is a catchment scale reactive transport model which can simulate agrochemical and transformation products exported from agricultural catchments. We use the Eur-Agri-SSP scenarios that extend and enrich the basic Shared Socio-economic Pathways with a regional and sectoral component on agriculture to explain the socio-economic change and climate projections for Representative concentration pathways to adopt climate change scenarios. The integrated modelling framework links the future scenario results from independent, standalone models that present crop rotation, land use, pesticide regulation and climate to the pesticide fate model (Zin-AgriTRA). The framework is applied to an agricultural catchment in Burgenland, Austria, to quantify pesticide pollution under future climate and socio-economic change up to 2050
    corecore