8,274 research outputs found
Using microsimulation feedback for trip adaptation for realistic traffic in Dallas
This paper presents a day-to-day re-routing relaxation approach for traffic
simulations. Starting from an initial planset for the routes, the route-based
microsimulation is executed. The result of the microsimulation is fed into a
re-router, which re-routes a certain percentage of all trips. This approach
makes the traffic patterns in the microsimulation much more reasonable.
Further, it is shown that the method described in this paper can lead to strong
oscillations in the solutions.Comment: Accepted by International Journal of Modern Physics C. Complete
postscript version including figures in
http://www-transims.tsasa.lanl.gov/research_team/papers
Coalescence in low-viscosity liquids
The expected universal dynamics associated with the initial stage of droplet
coalescence are difficult to study visually due to the rapid motion of the
liquid and the awkward viewing geometry. Here we employ an electrical method to
study the coalescence of two inviscid droplets at early times. We measure the
growth dynamics of the bridge connecting the two droplets and observe a new
asymptotic regime inconsistent with previous theoretical predictions. The
measurements are consistent with a model in which the two liquids coalesce with
a slightly deformed interface.Comment: 4 pages and 4 figure
Darwinian Data Structure Selection
Data structure selection and tuning is laborious but can vastly improve an
application's performance and memory footprint. Some data structures share a
common interface and enjoy multiple implementations. We call them Darwinian
Data Structures (DDS), since we can subject their implementations to survival
of the fittest. We introduce ARTEMIS a multi-objective, cloud-based
search-based optimisation framework that automatically finds optimal, tuned DDS
modulo a test suite, then changes an application to use that DDS. ARTEMIS
achieves substantial performance improvements for \emph{every} project in
Java projects from DaCapo benchmark, popular projects and uniformly
sampled projects from GitHub. For execution time, CPU usage, and memory
consumption, ARTEMIS finds at least one solution that improves \emph{all}
measures for () of the projects. The median improvement across
the best solutions is , , for runtime, memory and CPU
usage.
These aggregate results understate ARTEMIS's potential impact. Some of the
benchmarks it improves are libraries or utility functions. Two examples are
gson, a ubiquitous Java serialization framework, and xalan, Apache's XML
transformation tool. ARTEMIS improves gson by \%, and for
memory, runtime, and CPU; ARTEMIS improves xalan's memory consumption by
\%. \emph{Every} client of these projects will benefit from these
performance improvements.Comment: 11 page
The packing of granular polymer chains
Rigid particles pack into structures, such as sand dunes on the beach, whose
overall stability is determined by the average number of contacts between
particles. However, when packing spatially extended objects with flexible
shapes, additional concepts must be invoked to understand the stability of the
resulting structure. Here we study the disordered packing of chains constructed
out of flexibly-connected hard spheres. Using X-ray tomography, we find long
chains pack into a low-density structure whose mechanical rigidity is mainly
provided by the backbone. On compaction, randomly-oriented, semi-rigid loops
form along the chain, and the packing of chains can be understood as the
jamming of these elements. Finally we uncover close similarities between the
packing of chains and the glass transition in polymers.Comment: 11 pages, 4 figure
Economics-Based Optimization of Unstable Flows
As an example for the optimization of unstable flows, we present an
economics-based method for deciding the optimal rates at which vehicles are
allowed to enter a highway. It exploits the naturally occuring fluctuations of
traffic flow and is flexible enough to adapt in real time to the transient flow
characteristics of road traffic. Simulations based on realistic parameter
values show that this strategy is feasible for naturally occurring traffic, and
that even far from optimality, injection policies can improve traffic flow.
Moreover, the same method can be applied to the optimization of flows of gases
and granular media.Comment: Revised version of ``Optimizing Traffic Flow'' (cond-mat/9809397).
For related work see http://www.parc.xerox.com/dynamics/ and
http://www.theo2.physik.uni-stuttgart.de/helbing.htm
Discrete stochastic models for traffic flow
We investigate a probabilistic cellular automaton model which has been
introduced recently. This model describes single-lane traffic flow on a ring
and generalizes the asymmetric exclusion process models. We study the
equilibrium properties and calculate the so-called fundamental diagrams (flow
vs.\ density) for parallel dynamics. This is done numerically by computer
simulations of the model and by means of an improved mean-field approximation
which takes into account short-range correlations. For cars with maximum
velocity 1 the simplest non-trivial approximation gives the exact result. For
higher velocities the analytical results, obtained by iterated application of
the approximation scheme, are in excellent agreement with the numerical
simulations.Comment: Revtex, 30 pages, full postscript version (including figures)
available by anonymous ftp from "fileserv1.mi.uni-koeln.de" in the directory
"pub/incoming/" paper accepted for publication in Phys.Rev.
- …