10,379 research outputs found

    Modeling Two Dimensional Magnetic Domain Patterns

    Full text link
    Two-dimensional magnetic garnets exhibit complex and fascinating magnetic domain structures, like stripes, labyrinths, cells and mixed states of stripes and cells. These patterns do change in a reversible way when the intensity of an externally applied magnetic field is varied. The main objective of this contribution is to present the results of a model that yields a rich pattern structure that closely resembles what is observed experimentally. Our model is a generalized two-dimensional Ising-like spin-one Hamiltonian with long-range interactions, which also incorporates anisotropy and Zeeman terms. The model is studied numerically, by means of Monte Carlo simulations. Changing the model parameters stripes, labyrinth and/or cellular domain structures are generated. For a variety of cases we display the patterns, determine the average size of the domains, the ordering transition temperature, specific heat, magnetic susceptibility and hysteresis cycle. Finally, we examine the reversibility of the pattern evolution under variations of the applied magnetic field. The results we obtain are in good qualitative agreement with experiment.Comment: 8 pages, 12 figures, submitted to Phys. Rev.

    Equivalence of glass transition and colloidal glass transition in the hard-sphere limit

    Get PDF
    We show that the slowing of the dynamics in simulations of several model glass-forming liquids is equivalent to the hard-sphere glass transition in the low-pressure limit. In this limit, we find universal behavior of the relaxation time by collapsing molecular-dynamics data for all systems studied onto a single curve as a function of T/pT/p, the ratio of the temperature to the pressure. At higher pressures, there are deviations from this universal behavior that depend on the inter-particle potential, implying that additional physical processes must enter into the dynamics of glass-formation.Comment: 4 pages, 4 figure

    On the shape of a pure O-sequence

    Full text link
    An order ideal is a finite poset X of (monic) monomials such that, whenever M is in X and N divides M, then N is in X. If all, say t, maximal monomials of X have the same degree, then X is pure (of type t). A pure O-sequence is the vector, h=(1,h_1,...,h_e), counting the monomials of X in each degree. Equivalently, in the language of commutative algebra, pure O-sequences are the h-vectors of monomial Artinian level algebras. Pure O-sequences had their origin in one of Richard Stanley's early works in this area, and have since played a significant role in at least three disciplines: the study of simplicial complexes and their f-vectors, level algebras, and matroids. This monograph is intended to be the first systematic study of the theory of pure O-sequences. Our work, making an extensive use of algebraic and combinatorial techniques, includes: (i) A characterization of the first half of a pure O-sequence, which gives the exact converse to an algebraic g-theorem of Hausel; (ii) A study of (the failing of) the unimodality property; (iii) The problem of enumerating pure O-sequences, including a proof that almost all O-sequences are pure, and the asymptotic enumeration of socle degree 3 pure O-sequences of type t; (iv) The Interval Conjecture for Pure O-sequences (ICP), which represents perhaps the strongest possible structural result short of an (impossible?) characterization; (v) A pithy connection of the ICP with Stanley's matroid h-vector conjecture; (vi) A specific study of pure O-sequences of type 2, including a proof of the Weak Lefschetz Property in codimension 3 in characteristic zero. As a corollary, pure O-sequences of codimension 3 and type 2 are unimodal (over any field); (vii) An analysis of the extent to which the Weak and Strong Lefschetz Properties can fail for monomial algebras; (viii) Some observations about pure f-vectors, an important special case of pure O-sequences.Comment: iii + 77 pages monograph, to appear as an AMS Memoir. Several, mostly minor revisions with respect to last year's versio
    corecore