576 research outputs found

    How does it really feel to act together? : Shared emotions and the phenomenology of we-agency

    Get PDF
    Research on the phenomenology of agency for joint action has so far focused on the sense of agency and control in joint action, leaving aside questions on how it feels to act together. This paper tries to fill this gap in a way consistent with the existing theories of joint action and shared emotion. We first reconstruct Pacherie’s (Phenomenology and the Cognitive Sciences, 13, 25–46, 2014) account on the phenomenology of agency for joint action, pointing out its two problems, namely (1) the necessary trade-off between the sense of self- and we-agency; and (2) the lack of affective phenomenology of joint action in general. After elaborating on these criticisms based on our theory of shared emotion, we substantiate the second criticism by discussing different mechanisms of shared affect—feelings and emotions—that are present in typical joint actions. We show that our account improves on Pacherie’s, first by introducing our agentive model of we-agency to overcome her unnecessary dichotomy between a sense of self- and we-agency, and then by suggesting that the mechanisms of shared affect enhance not only the predictability of other agents’ actions as Pacherie highlights, but also an agentive sense of we-agency that emerges from shared emotions experienced in the course and consequence of joint action.Peer reviewe

    Cerebrospinal Fluid Concentration of Brain-Derived Neurotrophic Factor and Cognitive Function in Non-Demented Subjects

    Get PDF
    Brain-derived neurotrophic factor (BDNF) is an activity-dependent secreted protein that is critical to organization of neuronal networks and synaptic plasticity, especially in the hippocampus. We tested hypothesis that reduced CSF BDNF is associated with age-related cognitive decline.CSF concentration of BDNF, Abeta(42) and total tau were measured in 128 cognitively normal adults (Normals), 21 patients with Alzheimer's disease (AD), and nine patients with Mild Cognitive Impairment. Apolipoprotein E and BDNF SNP rs6265 genotype were determined. Neuropsychological tests were performed at baseline for all subjects and at follow-up visits in 50 Normals. CSF BDNF level was lower in AD patients compared to age-matched Normals (p = 0.02). CSF BDNF concentration decreased with age among Normals and was higher in women than men (both p<0.001). After adjusting for age, gender, education, CSF Abeta(42) and total tau, and APOE and BDNF genotypes, lower CSF BDNF concentration was associated poorer immediate and delayed recall at baseline (both p<0.05) and in follow up of approximately 3 years duration (both p<0.01).Reduced CSF BDNF was associated with age-related cognitive decline, suggesting a potential mechanism that may contribute in part to cognitive decline in older individuals

    Patterns and flow in frictional fluid dynamics

    Get PDF
    Pattern-forming processes in simple fluids and suspensions have been studied extensively, and the basic displacement structures, similar to viscous fingers and fractals in capillary dominated flows, have been identified. However, the fundamental displacement morphologies in frictional fluids and granular mixtures have not been mapped out. Here we consider Coulomb friction and compressibility in the fluid dynamics, and discover surprising responses including highly intermittent flow and a transition to quasi-continuodynamics. Moreover, by varying the injection rate over several orders of magnitude, we characterize new dynamic modes ranging from stick-slip bubbles at low rate to destabilized viscous fingers at high rate. We classify the fluid dynamics into frictional and viscous regimes, and present a unified description of emerging morphologies in granular mixtures in the form of extended phase diagrams

    Subregional 6-[18F]fluoro-ʟ-m-tyrosine Uptake in the Striatum in Parkinson's Disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In idiopathic Parkinson's disease (PD) the clinical features are heterogeneous and include different predominant symptoms. The aim of the present study was to determine the relationship between subregional aromatic l-amino acid decarboxylase (AADC) activity in the striatum and the cardinal motor symptoms of PD using high-resolution positron emission tomography (PET) with an AADC tracer, 6-[<sup>18</sup>F]fluoro-ʟ-<it>m</it>-tyrosine (FMT).</p> <p>Methods</p> <p>We assessed 101 patients with PD and 19 healthy volunteers. PD was diagnosed based on the UK Brain Bank criteria by two experts on movement disorders. Motor symptoms were measured with the Unified Parkinson's Disease Rating Scale (UPDRS). FMT uptake in the subregions of the striatum was analyzed using semi-automated software for region-of-interest demarcation on co-registered magnetic resonance images.</p> <p>Results</p> <p>In all PD patients, FMT uptake was decreased in the posterior putamen regardless of predominant motor symptoms and disease duration. Smaller uptake values were found in the putamen contralateral to the side with more affected limbs. The severity of bradykinesia, rigidity, and axial symptoms was correlated with the decrease of FMT uptake in the putamen, particularly in the anterior part. No significant correlation was observed between tremors and FMT uptake.</p> <p>Conclusions</p> <p>Decrease of FMT uptake in the posterior putamen appears to be most sensitive in mild PD and uptake in the anterior putamen may reflect the severity of main motor symptoms, except for tremor.</p

    Dopamine Signaling Is Essential for Precise Rates of Locomotion by C. elegans

    Get PDF
    Dopamine is an important neuromodulator in both vertebrates and invertebrates. We have found that reduced dopamine signaling can cause a distinct abnormality in the behavior of the nematode C. elegans, which has only eight dopaminergic neurons. Using an automated particle-tracking system for the analysis of C. elegans locomotion, we observed that individual wild-type animals made small adjustments to their speed to maintain constant rates of locomotion. By contrast, individual mutant animals defective in the synthesis of dopamine made larger adjustments to their speeds, resulting in large fluctuations in their rates of locomotion. Mutants defective in dopamine signaling also frequently exhibited both abnormally high and abnormally low average speeds. The ability to make small adjustments to speed was restored to these mutants by treatment with dopamine. These behaviors depended on the D2-like dopamine receptor DOP-3 and the G-protein subunit GOA-1. We suggest that C. elegans and other animals, including humans, might share mechanisms by which dopamine restricts motor activity levels and coordinates movement

    IAEA activities on 67Cu, 186Re, 47Sc Theranostic radionuclides and Radiopharmaceuticals

    Get PDF
    Despite interesting properties, the use of 67Cu, 186Re and 47Sc theranostic radionuclides in preclinical studies and clinical trials is curtailed by their limited availability due to a lack of widely established production methods. An IAEA Coordinated Research Project (CRP) was initiated to identify important technical issues related to the production and quality control of these emerging radionuclides and related radiopharmaceuticals, based on the request from IAEA Member States. The international team worked on targetry, separation, quality control and radiopharmaceutical aspects of the radionuclides obtained from research reactors and cyclotrons leading to preparation of a standard recommendations for all Member States. The CRP was initiated in 2016 with fourteen participants from thirteen Member States from four continents. Extraordinary results on the production, quality control and preclinical evaluation of selected radionuclides were reported in this project that was finalized in 2020. The outcomes, outputs and results of this project achieved by participating Member States are described in this minireview

    Zebrafish Endzone Regulates Neural Crest-Derived Chromatophore Differentiation and Morphology

    Get PDF
    The development of neural crest-derived pigment cells has been studied extensively as a model for cellular differentiation, disease and environmental adaptation. Neural crest-derived chromatophores in the zebrafish (Danio rerio) consist of three types: melanophores, xanthophores and iridiphores. We have identified the zebrafish mutant endzone (enz), that was isolated in a screen for mutants with neural crest development phenotypes, based on an abnormal melanophore pattern. We have found that although wild-type numbers of chromatophore precursors are generated in the first day of development and migrate normally in enz mutants, the numbers of all three chromatophore cell types that ultimately develop are reduced. Further, differentiated melanophores and xanthophores subsequently lose dendricity, and iridiphores are reduced in size. We demonstrate that enz function is required cell autonomously by melanophores and that the enz locus is located on chromosome 7. In addition, zebrafish enz appears to selectively regulate chromatophore development within the neural crest lineage since all other major derivatives develop normally. Our results suggest that enz is required relatively late in the development of all three embryonic chromatophore types and is normally necessary for terminal differentiation and the maintenance of cell size and morphology. Thus, although developmental regulation of different chromatophore sublineages in zebrafish is in part genetically distinct, enz provides an example of a common regulator of neural crest-derived chromatophore differentiation and morphology

    Sodium Phenylbutyrate Controls Neuroinflammatory and Antioxidant Activities and Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease

    Get PDF
    Neuroinflammation and oxidative stress underlie the pathogenesis of various neurodegenerative disorders. Here we demonstrate that sodium phenylbutyrate (NaPB), an FDA-approved therapy for reducing plasma ammonia and glutamine in urea cycle disorders, can suppress both proinflammatory molecules and reactive oxygen species (ROS) in activated glial cells. Interestingly, NaPB also decreased the level of cholesterol but involved only intermediates, not the end product of cholesterol biosynthesis pathway for these functions. While inhibitors of both geranylgeranyl transferase (GGTI) and farnesyl transferase (FTI) inhibited the activation of NF-κB, inhibitor of GGTI, but not FTI, suppressed the production of ROS. Accordingly, a dominant-negative mutant of p21rac, but not p21ras, attenuated the production of ROS from activated microglia. Inhibition of both p21ras and p21rac activation by NaPB in microglial cells suggests that NaPB exerts anti-inflammatory and antioxidative effects via inhibition of these small G proteins. Consistently, we found activation of both p21ras and p21rac in vivo in the substantia nigra of acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Oral administration of NaPB reduced nigral activation of p21ras and p21rac, protected nigral reduced glutathione, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Consistently, FTI and GGTI also protected nigrostriata in MPTP-intoxicated mice. Furthermore, NaPB also halted the disease progression in a chronic MPTP mouse model. These results identify novel mode of action of NaPB and suggest that NaPB may be of therapeutic benefit for neurodegenerative disorders
    corecore