36 research outputs found
Observation of micropores in hard-carbon using Xe-129 NMR porosimetry
The existence of micropores and the change of surface structure in pitch-based hard-carbon in xenon atmosphere were demonstrated using Xe-129 NMR. For high-pressure (4.0 MPa) Xe-129 NMR measurements, the hard-carbon samples in Xe gas showed three peaks at 27, 34 and 210 ppm. The last was attributed to the xenon in micropores (<1 nm) in hard-carbon particles. The NMR spectrum of a sample evacuated at 773 K and exposed to 0.1 MPa Xe gas at 773 K for 24 h showed two peaks at 29 and 128 ppm, which were attributed, respectively, to the xenon atoms adsorbed in the large pores (probably mesopores) and micropores of hard-carbon. With increasing annealing time in Xe gas at 773 K, both peaks shifted and merged into one peak at 50 ppm. The diffusion of adsorbed xenon atoms is very slow, probably because the transfer of molecules or atoms among micropores in hard-carbon does not occur readily. Many micropores are isolated from the outer surface. For that reason, xenon atoms are thought to be adsorbed only by micropores near the surface, which are easily accessible from the surrounding space.</p
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Novel monoclonal antibody recognizing triglyceride-rich oxidized LDLs associated with severe liver disease and small oxidized LDLs in normal subjects
Background: Triglyceride-rich low-density lipoproteins (TG-rich LDLs) in the plasma of patients with severe liver disease are reported to change macrophages into foam cells in vitro. Methods: Male BALB/c mice were immunized with TG-rich LDLs isolated from the plasma of a patient with severe liver disease. The resulting monoclonal antibody (G11-6) was used in a sandwich enzyme-linked immunosorbent assay (ELISA) in combination with polyclonal anti-apolipoprotein B antibodies. The time course of copper-mediated LDL oxidation was monitored using this ELISA. The results were compared to those of the two commercial ELISAs for oxidized LDL using DLH or ML25, thiobarbituric acid reactive substances (TBARS), and the optical absorbance for the conjugated dienes generated in lipid peroxides. Further, the lipoprotein fractions separated by gel filtration were tested with this ELISA in healthy volunteers (n = 11) and patients (n = 3) with liver disease. Results: G11-6 reacted with oxidized LDLs during only the early phase of copper-oxidation, being distinct from the other monoclonal antibodies and methods. G11-6 was confirmed to react with TG-rich LDLs in patients, while it reacted with small LDL particles in normal controls. Conclusions: The monoclonal antibody G11-6 is useful for detecting oxidized small LDLs in normal controls and oxidized TG-rich LDLs in patients with severe liver disease
Disease-associated marked hyperalphalipoproteinemia
Marked hyperalphalipoproteinemia (HAL) is a heterogeneous syndrome. To clarify the pathophysiological significance of HAL, we compared clinical profiles between marked HAL subjects with and without cholesteryl ester transfer protein (CETP) deficiency. CETP deficiency was associated with cardiovascular diseases and strokes in the HAL population, particularly in female. HAL women without CETP deficiency tended to have higher prevalence with cancer history. HAL may not always be a longevity marker, but be sometimes accompanied with pathological conditions
Large scale analysis of pediatric antiviral CD8+ T cell populations reveals sustained, functional and mature responses
Abstract Background Cellular immunity plays a crucial role in cytomegalovirus (CMV) infection and substantial populations of CMV-specific T cells accumulate throughout life. However, although CMV infection occurs during childhood, relatively little is know about the typical quantity and quality of T cell responses in pediatric populations. Methods One thousand and thirty-six people (Male/Female = 594/442, Age: 0–19 yr.; 959 subjects, 20–29 yr.; 77 subjects) were examined for HLA typing. All of 1036 subjects were tested for HLA-A2 antigen. Of 1036 subjects, 887 were also tested for HLA-A23, 24 antigens. In addition, 50 elderly people (Male/Female = 11/39, Age: 60–92 yr.) were also tested for HLA-A2 antigen. We analyzed the CD8+ T cell responses to CMV, comparing these to responses in children and young. The frequencies, phenotype and function CD8+ T cells for two imunodominant epitopes from pp65 were measured. Results We observed consistently high frequency and phenotypically "mature" (CD27 low, CD28 low, CD45RA+) CMV-specific CD8+ T cell responses in children, including those studied in the first year of life. These CD8+ T cells retained functionality across all age groups, and showed evidence of memory "inflation" only in later adult life. Conclusion CMV consistently elicits a very strong CD8+ T cell response in infants and large pools of CMV specific CD8+ T cells are maintained throughout childhood. The presence of CMV may considerably mould the CD8+ T cell compartment over time, but the relative frequencies of CMV-specific cells do not show the evidence of a population-level increase during childhood and adulthood. This contrast with the marked expansion ("inflation") of such CD8+ T cells in older adults. This study indicates that large scale analysis of peptide specific T cell responses in infants is readily possible. The robust nature of the responses observed suggests vaccine strategies aimed at priming and boosting CD8+ T cells against major pathogens (including HIV, malaria and CMV itself) could be successful in this age-group.</p
Blood asymmetric dimethylarginine and nitrite/nitrate concentrations in short-stature children born small for gestational age with and without growth hormone therapy
Objective To investigate the basal amino acid metabolism and impact of growth hormone (GH) therapy in short-stature children born small for gestational age (short SGA children). Methods In this age-matched case-control study, the basal blood levels of amino acids, asymmetric dimethylarginine (ADMA), and nitrite/nitrate (NOx) were compared between 24 short SGA children and 25 age-matched normal children. Changes in these parameters were assessed for 12 months in 12 short SGA children initiating GH therapy (Group A) and 12 age-matched short SGA children without GH therapy (Group B). Results The arginine levels were significantly lower in the short SGA than in normal children. The ADMA levels were significantly higher and NOx levels were significantly lower in the short SGA than normal children. In Group A, the ADMA level was significantly lower and NOx level was significantly higher at 6 months than at baseline. At 12 months, the ADMA level in Group A began to increase, but the NOx level remained the same. Group B showed no significant changes. Conclusions This study is the first to show that ADMA is promoted and nitric oxide is suppressed in short SGA children and that GH therapy affects the production of ADMA and nitric oxide