20 research outputs found

    Every team deserves a second chance:An Interactive 9x9 Go Experience (Demonstration)

    Get PDF
    We show that without using any domain knowledge, we can predict the final performance of a team of voting agents, at any step towards solving a complex problem. This demo allows users to interact with our system, and observe its predictions, while playing 9x9 Go

    Every team deserves a second chance:identifying when things go wrong (Student Abstract)

    Get PDF
    We show that without using any domain knowledge, we can predict the final performance of a team of voting agents, at any step towards solving a complex problem

    Every team makes mistakes:an initial report on predicting failure in teamwork

    Get PDF
    Voting among different agents is a powerful tool in problem solving, and it has been widely applied to improve the performance in machine learning. However, the potential of voting has been explored only in improving the ability of finding the correct answer to a complex problem. In this paper we present a novel benefit in voting, that has not been observed before: we show that we can use the voting patterns to assess the performance of a team and predict their final outcome. This prediction can be executed at any moment during problem-solving and it is completely domain independent. We present a preliminary theoretical explanation of why our prediction method works, where we show that the accuracy is better for diverse teams composed by different agents than for uniform teams made of copies of the same agent. We also perform experiments in the Computer Go domain, where we show that we can obtain a high accuracy in predicting the final outcome of the games. We analyze the prediction accuracy for 3 different teams, and we show that the prediction works significantly better for a diverse team. Since our approach is completely domain independent, it can be easily applied to a variety of domains, such as the video games in the Arcade Learning Environment

    Every team makes mistakes, in large action spaces

    Get PDF
    Voting is applied to better estimate an optimal answer to complex problems in many domains. We recently presented a novel benefit of voting, that has not been observed before: we can use the voting patterns to assess the performance of a team and predict whether it will be successful or not in problem-solving. Our prediction technique is completely domain independent, and it can be executed at any time during problem solving. In this paper we present a novel result about our technique: we show that the prediction quality increases with the size of the action space. We present a theoretical explanation for such phenomenon, and experiments in Computer Go with a variety of board sizes
    corecore