Every Team Deserves a Second Chance:
An Interactive 9x9 Go Experience

(Demonstration)

Leandro Soriano Marcolino!, Vaishnavh Nagarajan?, Milind Tambe*
! University of Southern California, Los Angeles, CA, 90089, USA
{sorianom, tambe}@usc.edu
2 Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
vaish@cse.iitm.ac.in

ABSTRACT

We show that without using any domain knowledge, we can predict
the final performance of a team of voting agents, at any step towards
solving a complex problem. This demo allows users to interact with
our system, and observe its predictions, while playing 9x9 Go.

Categories and Subject Descriptors
1.2.1 [Artificial Intelligence]: Applications and Expert Systems

Keywords

Teamwork; Single and multiagent learning; Social choice

1. INTRODUCTION

It is well known that aggregating the opinions of different agents
can lead to a great performance when solving complex problems.
For example, voting has been extensively used to improve the per-

formance in machine learning, crowdsourcing, and even board games.

Besides, it is an aggregation technique that does not depend on any
domain, being very suited for wide applicability. However, a team
of voting agents will not always be successful in problem-solving.
It is fundamental, therefore, to be able to quickly assess the per-
formance of teams, so that a system operator can take actions to
recover the situation in time.

Current multi-agent systems works focus on identifying faulty
behavior, or verifying correctness [2, 1]. Such approaches are able
to identify if a system is not correct, but provide no help if a correct
system of agents is failing to solve a complex problem. Other works
focus on team analysis, but require domain knowledge [5, 6].

In this AAMAS conference, we present a novel method to pre-
dict the final performance (success or failure) of a team of vot-
ing agents, without using any domain knowledge [3]. Hence, our
method can be easily applied in a great variety of scenarios. More-
over, our approach can be quickly applied online at any step of
the problem-solving process, allowing a system operator to identify
when the performance of a team presents issues. This can be fun-
damental in many applications. For example, consider a complex
problem being solved in a cluster of computers. It is undesirable
to allocate more resources than necessary, but if we notice that a

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum

(eds.), May 4-8, 2015, Istanbul, Turkey.

Copyright (C) 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

team is failing in problem solving, we can increase the allocation
of resources. Or consider a team playing together a game against an
opponent (such as board games, or poker). Different teams might
play better against different opponents. Hence, if we notice that a
team is having issues, we could dynamically change it. Under time
constraints, however, such prediction must be done quickly.

Our approach is based on a prediction model derived from a
graphical representation of the problem-solving process, where the
final outcome is modeled as a random variable that is influenced by
the subsets of agents that agreed together over the actions taken at
each step towards solving the problem. Hence, our representation
has no dependency on the domain.

In this demo, the user will be able to interact with our system,
while playing 9x9 Go games against a team of agents. The agents
vote together at each turn of the game, and our prediction system
runs in real time to show the team’s probability of victory. Hence,
the user can compare her own estimations with the ones given by
our system, and will learn about our work while being entertained
by playing a game. Our demo also allows a team to play against an
artificial opponent, so that users that do not want to interact with the
system can still learn about it and observe its predictions. A video
showing our demo is at http://youtu.be/0O3uDQCKItNs.

2. PREDICTION METHOD

We briefly present here our prediction methodology. We refer
the reader to [3] for a more complete description, and for a theoret-
ical explanation of why the method works. We consider scenarios
where agents vote at every step of a complex problem, in order to
take common decisions towards problem-solving. Hence, let T be
a set of agents ¢;, A a set of actions a; and S a set of world states
sk. The agents vote for an action at each world state, and the team
takes the action decided by plurality voting. The team obtains a
final reward r upon completing all world states. We assume two
possible final rewards: “success” (1) or “failure” (0). We define the
prediction problem as follows: without using any knowledge of the
domain, identify the final reward that will be received by a team.
This prediction must be executable at any world state, allowing an
operator to take remedy procedures in time.

The main idea of our algorithm is to learn a prediction function,
given the frequencies of agreements of all possible agent subsets
over the chosen actions. Let P(T) = {T1, T2, ...} be the power
set of the set of agents, a; the action chosen in world state s; and
H; C T the subset of agents that agreed on a; in that world state.

Consider the feature vector X = (z1, x2, . ..) computed at world
state s;j, where each dimension (feature) has a one-to-one mapping
with P(T). We define x; as the proportion of times that the chosen

action was agreed upon by the subset of agents T;. That is, x; =

S; —T;
L;ll % where I is the indicator function and S; C S is
J

the set of world states from s; to the current world state s;;.
Hence, given a set 5(, where for each feature vector Xy € X
we have the associated reward r;, we can estimate a function, f s
that returns an estimated reward 7 (0 < # < 1) given an input X.
We classify estimated rewards above 0.5 as “success”, and below
0.5 as “failure”. In order to learn the classification model, we use
the features at the final world state, but the learned function can be
evaluated at any stage. We use classification by logistic regression,

which models f as f()‘c’) = M%ET*)'

3. DEMONSTRATION

In this demo we show the predictions given by our methodol-
ogy in real time, in 9x9 Go games. Go is a turn-based board game
between two players. At each turn, the players place a stone in
an empty intersection of the board. If a group of stones is sur-
rounded by the opponent’s stones, they are removed. The stones
that surround an area form a territory, whose value is counted by
the number of empty intersections inside. The final score is the
total amount of territory minus the number of captured stones. A
detailed description of the rules can be found in [4]. Go is a very
popular game, especially in Asian cultures, and it is currently one
of the greatest challenges for Artificial Intelligence.

Our system has four different software: Fuego 1.1, GnuGo 3.8,
Pachi 9.01, MoGo 4, and two variants of Fuego, in a total of 6 dif-
ferent agents. These are all publicly available Go software. The
agents are represented by “cartoon” characters, and the user plays
a game in a graphical interface, by clicking in the position where
she wants to play. When it is our system’s turn, the program dis-
plays the votes of all agents in the board, by showing the respective
character in the position where the agent voted for (Figure 1(a)).

However, our demo goes beyond playing a game against a team
of agents. Our main objective is to demonstrate our team perfor-
mance prediction methodology. In a separate screen (Figure 1(b)),
we show in real time our estimated probability of the team winning
the game. Such predictions are shown in a graph, allowing the user
to observe how the probability dynamically changes at each turn.
This allows the user to compare our predictions with her own, be-
sides demonstrating that our method can be executed in real time.

Moreover, we also show the frequency that each subset of agents
agreed on the final chosen action. We display the subsets in a clear
manner by showing the corresponding characters close together
(for additional clarity, we do not display subsets whose frequency
is 0 or very close to 0 in comparison to the other subsets). This
emphasizes the fact that we use only this information to make a
prediction, and that our method is completely domain independent.
Moreover, it allows the user to make her own predictions based on
the displayed frequencies. Finally, in the end of the game, the sys-
tem scores the result, and the user is able to verify our predictions.

Since in our work we compare the quality of our predictions for
different kinds of teams [3], in this demo we allow two different
kinds: “diverse”, composed of one copy of each agent; and “uni-
form”, composed of multiple copies of Fuego (with different ran-
dom seeds). The demo also allows a team to play against an ar-
tificial agent (while still showing our predictions). This feature is
useful to continually display our demo while no user is interacting
with it, in order to attract users to play an actual game and learn
about our methodology. We will also have pamphlets to teach the
basic rules of Go for users that are unfamiliar with the game.
Acknowledgments: This research was supported by MURI grant
WO11NF-11-1-0332, and by IUSSTFE.

A B c D E £ [H J

(a) User plays 9x9 Go games against a team of
voting agents. Characters display the positions
where each agent voted for.

Success Prediction
1.0
Success

Failure

Probability

05 10 15 20 25
Turn

Frequency of Agreements

(b) Our predictions are displayed in real time for
each turn of the game. We also show the fre-
quency that each subset of agents picks the final
chosen action by the team.

Figure 1: In our demo a user plays Go against a team of agents,
while observing our real time predictions about the final outcome.

REFERENCES

[1] T. T. Doan, Y. Yao, N. Alechina, and B. Logan. Verifying

heterogeneous multi-agent programs. In AAMAS, 2014.

E. Khalastchi, M. Kalech, and L. Rokach. A hybrid approach

for fault detection in autonomous physical agents. In AAMAS,

2014.

[3] V. Nagarajan, L. S. Marcolino, and M. Tambe. Every team
deserves a second chance: Identifying when things go wrong.
In AAMAS, 2015.

[4] Pandanet. Introduction to Go. http://www.pandanet.

co.Jjp/English/introduction_of_go/.

T. Raines, M. Tambe, and S. Marsella. Automated assistants

to aid humans in understanding team behaviors. In AGENTS,

2000.

F. Ramos and H. Ayanegui. Discovering tactical behavior

patterns supported by topological structures in soccer-agent

domains. In AAMAS, 2008.

[2

—

[5

—

[6

—_

