1,973 research outputs found

    Density-matrix renormalization group study of pairing when electron-electron and electron-phonon interactions coexist: effect of the electronic band structure

    Full text link
    Density-matrix renormalization group is used to study the pairing when both of electron-electron and electron-phonon interactions are strong in the Holstein-Hubbard model at half-filling in a region intermediate between the adiabatic (Migdal's) and antiadiabatic limits. We have found: (i) the pairing correlation obtained for a one-dimensional system is nearly degenerate with the CDW correlation in a region where the phonon-induced attraction is comparable with the electron-electron repulsion, but (ii) pairing becomes dominant when we destroy the electron-hole symmetry in a trestle lattice. This provides an instance in which pairing can arise, in a lattice-structure dependent manner, from coexisting electron-electron and electron-phonon interactions.Comment: 4 pages, 3 figures; to appear in Phys. Rev. Let

    Mineralogy of Y-981971 LL Chondrite and Brecciation Processes of the LL Parent Body

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月30日(金) 国立国語研究所 2階講

    Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule

    Get PDF
    Quasicrystalline superlattices (QC-SLs) generated from single-component colloidal building blocks have been predicted by computer simulations but are challenging to reproduce experimentally. We discovered that 10-fold QC-SLs could self-organize from truncated tetrahedral quantum dots with anisotropic patchiness. Transmission electron microscopy and tomography measurements allow structural reconstruction of the QC-SL from the nanoscale packing to the atomic-scale orientation alignments. The unique QC order leads to a tiling concept, the “flexible polygon tiling rule,” that replicates the experimental observations. The keys for the single-component QC-SL formation were identified to be the anisotropic shape and patchiness of the building blocks and the assembly microscopic environment. Our discovery may spur the creation of various superstructures using anisotropic objects through an enthalpy-driven route

    Reassessing the Role of APOBEC3G in Human Immunodeficiency Virus Type 1 Infection of Quiescent CD4+ T-Cells

    Get PDF
    HIV-1 is restricted for infection of primary quiescent T-cells. After viral entry, reverse transcription is initiated but is not completed. Various hypotheses have been proposed for this cellular restriction including insufficient nucleotide pools and cellular factors, but none have been confirmed as the primary mechanism for restriction. A recent study by Chiu et al. implicates APOBEC3G, an anti-retroviral cytidine deaminase, as the cellular restriction factor. Here, we attempted to confirm these findings using the same strategy as reported by Chiu et al. of siRNA targeting knock-down of APOBEC3G expression. In contrast to the published study, our results do not support a role for APOBEC3G in restriction of HIV-1 in quiescent CD4+ T-cells. In our study, we tested the same siRNA as reported by Chiu et al. as well as two additional siRNAs targeting APOBEC3G, one of which showed 2-fold greater knock-down of APOBEC3G mRNA. However, none of the three siRNAs tested had a discernable effect on enhancing infection by HIV-1 in quiescent CD4+ T-cells. Therefore, we conclude that the primary mechanism of HIV-1 restriction in quiescent CD4+ T-cells remains to be elucidated
    corecore