222 research outputs found

    Carrying and Effect of Granulated Baits Formulated with Entomopathogenic Fungi among Atta sexdens rubropilosa Colonies (Hymenoptera: Formicidae)

    Get PDF
    The present study aimed to evaluate the carrying and effect of (dry) granulated baits containing conidia of entomopathogenic fungi among colonies of the leaf-cutting ant Atta sexdens rubropilosa in the laboratory. This bait type was chosen to facilitate its eventual commercial use. Two applications were performed: in the first, baits with 1x108 conidia/g were utilized while in the second employed concentrations 5 to 8.6 times greater. The baits were formulated with a citric pulp base, with 2 isolates of Beauveria bassiana, 1 of Paecilomyces lilacinus and 1 of Isaria fumosorosea. The following controls were utilized: (I) baits with sulfluramid insecticide, (II) without active ingredient, and (III) Acalypha spp. leaf discs. It was verified that the baits containing fungal conidia were rapidly carried to the nest interior in both applications and were rejected minimally. Thus, the (dry) granulated bait formulation appears to be an adequate vehicle for entomopathogenic fungi. At the doses and concentrations utilized, the fungi provoked only limited worker mortality, not killing the colonies. Given the rapid carrying and low rejection, a higher conidial dose per colony can, perhaps, kill them. Thus, it is inferred that all the isolates tested present potential as an agent to control colonies of leaf-cutting ants

    Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction

    Full text link
    Biochemistry and mechanics are closely coupled in cell adhesion. At sites of cell-matrix adhesion, mechanical force triggers signaling through the Rho-pathway, which leads to structural reinforcement and increased contractility in the actin cytoskeleton. The resulting force acts back to the sites of adhesion, resulting in a positive feedback loop for mature adhesion. Here we model this biochemical-mechanical feedback loop for the special case when the actin cytoskeleton is organized in stress fibers, which are contractile bundles of actin filaments. Activation of myosin II molecular motors through the Rho-pathway is described by a system of reaction-diffusion equations, which are coupled into a viscoelastic model for a contractile actin bundle. We find strong spatial gradients in the activation of contractility and in the corresponding deformation pattern of the stress fiber, in good agreement with experimental findings.Comment: Revtex, 35 pages, 13 Postscript figures included, in press with New Journal of Physics, Special Issue on The Physics of the Cytoskeleto

    Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells

    Get PDF
    Capsaicin has known pharmacological effects including the ability to reversibly open cellular tight junctions, among others. The aim of this study was to develop a strategy to enhance the paracellular transport of a substance with low permeability (FITC-dextran) across an epithelial cell monolayer via reversible opening of cellular tight junctions using a nanosystem comprised by capsaicin and of chitosan. We compared the biophysical properties of free capsaicin and capsaicin-loaded chitosan nanocapsules, including their cytotoxicity towards epithelial MDCK-C7 cells and their effect on the integrity of tight junctions, membrane permeability and cellular uptake. The cytotoxic response of MDCK-C7 cells to capsaicin at a concentration of 500 μM, which was evident for the free compound, is not observable following its encapsulation. The interaction between nanocapsules and the tight junctions of MDCK-C7 cells was investigated by impedance spectroscopy, digital holographic microscopy and structured illumination fluorescence microscopy. The nanocapsules modulated the interaction between capsaicin and tight junctions as shown by the different time profile of trans-epithelial electrical resistance and the enhanced permeability of monolayers incubated with FITC-dextran. Structured illumination fluorescence microscopy showed that the nanocapsules were internalized by MDCK-C7 cells. The capsaicin-loaded nanocapsules could be further developed as drug nanocarriers with enhanced epithelial permeability

    In vitro and in vivo mRNA delivery using lipid-enveloped pHresponsive polymer nanoparticles

    Get PDF
    Biodegradable core−shell structured nanoparticles with a poly(β-amino ester) (PBAE) core enveloped by a phospholipid bilayer shell were developed for in vivo mRNA delivery with a view toward delivery of mRNA-based vaccines. The pH-responsive PBAE component was chosen to promote endosome disruption, while the lipid surface layer was selected to minimize toxicity of the polycation core. Messenger RNA was efficiently adsorbed via electrostatic interactions onto the surface of these net positively charged nanoparticles. In vitro, mRNA-loaded particle uptake by dendritic cells led to mRNA delivery into the cytosol with low cytotoxicity, followed by translation of the encoded protein in these difficult-to-transfect cells at a frequency of 30%. Particles loaded with mRNA administered intranasally (i.n.) in mice led to the expression of the reporter protein luciferase in vivo as soon as 6 h after administration, a time point when naked mRNA given i.n. showed no expression. At later time points, luciferase expression was detected in naked mRNA-treated mice, but this group showed a wide variation in levels of transfection, compared to particle-treated mice. This system may thus be promising for noninvasive delivery of mRNA-based vaccines.United States. Dept. of Defense (Institute for Soldier Nanotechnology, contract W911NF-07-D-0004)Ragon Institute of MGH, MIT and HarvardSingapore. Agency for Science, Technology and ResearchHoward Hughes Medical Institute (Investigator

    The utility of superficial abdominal reflex in the initial diagnosis of scoliosis: a retrospective review of clinical characteristics of scoliosis with syringomyelia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With increasing use of magnetic resonance imaging (MRI), underlying syringomyelia is increasingly found in patients with presumed idiopathic scoliosis. To determine the indications for MRI in the differential diagnosis of scoliosis, several clinical characteristics of syringomyelia have been reported. Neurological signs, particularly abnormal superficial abdominal reflex (SAR), are important in establishing the initial diagnosis of scoliosis. However, the prevalence of abnormal SAR in patients with scoliosis and the sensitivity of this sign in predicting syringomyelia are not well known. We aimed to determine the diagnostic utility of SAR and other characteristics of syringomyelia in patients with scoliosis.</p> <p>Methods</p> <p>We reviewed the medical records of 93 patients with scoliosis, 90 of whom underwent corrective surgery. All patients underwent MRI to determine the presence of syringomyelia. Mean age at surgery was 12.5 years. Abnormal SAR was defined as unilateral or bilateral absence or hyporeflexia of SAR. We calculated indices of diagnostic utility of abnormal SAR for non-idiopathic scoliosis and for syringomyelia. Abnormal SAR, left thoracic curve pattern, gender, and curve flexibility were compared between scoliosis with syringomyelia and idiopathic scoliosis. Logistic regression analysis was performed with the existence of syringomyelia as the dependent variable and curve flexibility as the independent variable.</p> <p>Results</p> <p>Abnormal SAR was observed in 20 patients (prevalence 22%). All 6 patients with myopathic scoliosis displayed bilateral absence of SAR. The sensitivity of abnormal SAR for non-idiopathic scoliosis was 38%, with 96% specificity, 90% PPV (positive predictive value), and 60% NPV (negative predictive value). Syringomyelia was identified in 9 of the 93 patients (9.7%); 8 of these had abnormal SAR. The sensitivity of abnormal SAR for syringomyelia in presumed idiopathic scoliosis was 89%, with 95% specificity, 80% PPV, and 98% NPV. Gender, abnormal neurological findings, and curve flexibility differed significantly between patients with syringomyelia and those with idiopathic scoliosis (P < 0.05). In the logistic regression model, the area under the receiver operating characteristic (ROC) curve was 0.79 and the cut-off value of curve flexibility for syringomyelia was 50% (P = 0.08).</p> <p>Conclusion</p> <p>Abnormal SAR was a useful indicator not only for syringomyelia, but also for myogenic scoliosis.</p

    Psychophysiological Markers of Vulnerability to Psychopathology in Men with an Extra X Chromosome (XXY)

    Get PDF
    Studying genetically defined syndromes associated with increased risk for psychopathology may help in understanding neurodevelopmental mechanisms related to risk for psychopathology. Klinefelter syndrome (47,XXY) is one of the most common sex chromosomal aneuploidies (1 in 650 male births) and associated with increased vulnerability for psychopathology, including psychotic symptoms. Yet, it remains unknown whether this increased risk is associated with underlying psychophysiological mechanisms that are typically deficient in individuals with psychotic disorders. The present study assessed three “classic” psychophysiological markers of psychosis in Klinefelter syndrome (KS): smooth pursuit eye movements (SPEM), prepulse inhibition (PPI) and P50 suppression. Fourteen adults with KS and 15 non-clinical adults participated in the study. Data on SPEM (reflecting visuo-motor control) as well as PPI and P50 suppression (reflecting sensory gating) were collected. Dysfunctions in SPEM were observed in individuals with KS, with less smooth pursuit as expressed in lower position gain. Also, reduced sensory gating in individuals with KS was suggested by significantly reduced prepulse inhibition of the startle response (PPI) (effect size 1.6). No abnormalities were found in suppression of the P50 (effect size 0.6). We speculate that impairments in these psychophysiological mechanisms may reflect core brain dysfunctions that may also mediate the described increased vulnerability for psychotic symptoms in KS. Although speculative, such deficit specific, rather than disorder specific, psychophysiological dysfunctions in KS might convey vulnerability to other types of psychopathology as well. As KS already can be diagnosed prenatally, the predictive value of childhood impairments in prepulse inhibition and smooth pursuit for development of psychopathology later in life could be assessed. In sum, studying individuals with KS may prove to be an avenue of research leading to new hypotheses and insights into “at risk” pathways to psychopathology
    corecore