4 research outputs found

    Predicting the Formation of Haloacetonitriles and Haloacetamides by Simulated Distribution System Tests

    Get PDF
    © 2017 The Authors. Unintended chemical reactions between disinfectants and natural organic matter (NOM) or anthropogenic compounds in natural waters result in the formation of disinfection by-products (DBPs) during drinking water treatment. To date, numerous groups of disinfection by-products have been identified in drinking water, some of which are suspected to be of public health importance and thus are regulated in the water industry. Recent studies have suggested that some unregulated nitrogen-containing DBPs, such as haloacetonitriles (HANs) and haloacetamides (HAcAms), may have greater toxicity than the currently regulated groups (trihalomethanes, THMs, and haloacetic acids, HAAs). There is only sparse information on the behaviour of the HANs and HAcAms in distribution systems. It is however known that HANs can be hydrolysed to the HAcAms, which in turn can hydrolyse to form dihaloacetic acids (DHAAs). Simulated distribution systems tests (SDS) have been successfully applied to predict the formation of THMs and HAAs using a simple and inexpensive lab-based technique, and have been recommended by the US Environmental Protection Agency (EPA) to American water utilities for collecting information about the levels of DBPs occurring in their distribution systems. SDS tests aim to simulate the water quality, disinfectant residuals, and water ages of a real distribution system, allowing easy sampling at prescribed time intervals for analysis of DBP formation. These tests are also a useful tool for considering the impact of potential changes to distribution practices, such as switching from chlorination to chloramination, for example. Therefore, a sampling survey was conducted in four surface water treatment plants in the UK to examine the formation of HANs and HAcAms in both real distribution systems and SDS tests. The samples were extracted using liquid-liquid extraction and analysed by gas chromatography with electron capture detection (GC-ECD). The research sought to determine whether SDS can be a useful predictive tool for HANs and HAcAms in distribution systems and what levels of prediction error are to be expected

    Anaerobic Digestion Foaming Causes

    Get PDF
    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic digestion foaming problem and to identify the underlying mechanisms of foaming. Field and laboratory investigation identified organic loading as a cause of foaming. Bench scale batch digestion studies in sludge showed that the critical organic loading for foaming was at 2.5 kg VS.m -3 while the 5 kg VS.m -3 resulted in persistent foaming. Moreover, full scale foaming digesters exhibited higher foaming potential in digested sludge under aeration in the laboratory than the full scale non- foaming digesters indicating that the concentration of surface active agents was higher. Further investigation of the effect of the surface active compounds, BSA and n-valeric acid on foaming showed that both compounds induced persistent foaming at all the examined concentrations. Filamentous bacteria contribution to foam initiation and stabilization was considered insignificant, apart from one occasion (FI:5), due to the abundance of filaments in foaming sludge (FI≤3) and their partitioning in foam (FI≤3). Part of the current work also assessed the cost implications of a foaming incident at the full scale. The antifoam cost was found to be of major concern for the water utilities costing between £1.30 and £13.00 per 1000 m 3 of digester volume per day. However, there was no information on biogas and energy loss whereas the information provided on cleaning, maintenance costs and manpower working hours was poor. Thus, the overall cost of a foaming incident at the full scale could not be estimated at this stage

    The effect of organic loading rate on foam initiation during mesophilic anaerobic digestion of municipal wastewater sludge

    Get PDF
    The impact of increasing organic load on anaerobic digestion foaming was studied at both full and bench scale. Organic loadings of 1.25, 2.5 and 5 kg VS m(-3) were applied to bench-scale digesters. Foaming was monitored at a full scale digester operated in a comparable organic loading range over 15 months. The bench scale batch studies identified 2.5 kg VS m(-3) as a critical threshold for foam initiation while 5 kg VS m(-3) resulted in persistent foaming. Investigation of a full scale foaming event corroborated the laboratory observation that foaming may be initiated at a loading rate of 2.5 kg VS m(-3). Experimental findings on foam composition and differences in the quality characteristics between foaming and non-foaming sludges indicated that foam initiation derived from the combined effect of the liquid and gas phases inside a digester and that the solids/biomass ultimately stabilized foaming. (C) 2011 Elsevier Ltd. All rights reserved

    Anaerobic digestion foaming causes – A review

    Get PDF
    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water companies due to significant impacts on process efficiency and operational costs. Several foaming causes have been identified over the past few years by researchers. However, the supporting experimental information is limited and in some cases absent. The present report aims to provide a detailed review of the current anaerobic digestion foaming problem and to identify gaps in knowledge regarding the theory of foam formation in anaerobic digesters
    corecore