92 research outputs found

    A vision-based system to support tactical and physical analyses in futsal

    Get PDF
    This paper presents a vision-based system to support tactical and physical analyses of futsal teams. Most part of the current analyses in this sport are manually performed, while the existing solutions based on automatic approaches are frequently composed of costly and complex tools, developed for other kind of team sports, making it difficult their adoption by futsal teams. Our system, on the other hand, represents a simple yet efficient dedicated solution, which is based on the analyses of image sequences captured by a single stationary camera used to obtain top-view images of the entire court. We use adaptive background subtraction and blob analysis to detect players, as well as particle filters to track them in every video frame. The system determines the distance traveled by each player, his/her mean and maximum speeds, as well as generates heat maps that describe players’ occupancy during the match. To present the collected data, our system uses a specially developed mobile application. Experimental results with image sequences of an official match and a training match show that our system provides data with global mean tracking errors below 40 cm, demanding on 25 ms to process each frame and, thus, demonstrating its high application potential

    A molecular field theory for biaxial nematics composed of molecules with C_{2h} point group symmetry

    No full text
    The biaxial nematic phase is generally taken, either explicitly or implicitly, to have D2h point groupsymmetry. However, it is possible for the biaxial phase to have a lower symmetry depending on that of its constituent molecules. Here we develop a molecular field theory for a nematogen composed of C2h molecules in terms of the nine independent second rank orientational order parameters defining the C2h biaxial nematic. In addition there is a rank one order parameter constructed from two pseudovectors which is only non-zero in the C2h phase. The theory is simplified by removing all but the three dominant order parameters. The predicted phase behaviour is found to be rich with three possible biaxial nematic phases and with the transitions involving a biaxial nematic phase exhibiting tricritical points

    Quantification of landslide velocity from active waveguide–generated acoustic emission

    No full text
    Acoustic emission (AE) has become an established approach to monitor stability of soil slopes. However, the challenge has been to develop strategies to interpret and quantify deformation behaviour from the measured AE. AE monitoring of soil slopes commonly utilises an active waveguide which is installed in a borehole through the slope and comprises a metal waveguide rod or tube with a granular backfill surround. When the host slope deforms, the column of granular backfill also deforms and this generates AE that can propagate along the waveguide. Presented in the paper are results from the commissioning of dynamic shear apparatus used to subject full scale active waveguide models to simulated slope movements. The results confirm that AE rates generated are proportional to the rate of deformation, and the coefficient of proportionality that defines the relationship has been quantified (e.g. 4.4 x 105 for the angular gravel examined). The authors demonstrate that slope velocities can be quantified continuously in real-time through monitoring active waveguide generated AE during a slope failure simulation. The results show that the technique can quantify landslide velocity to better than an order of magnitude (i.e. consistent with standard landslide movement classification) and can therefore be used to provide an early warning of slope instability through detecting and quantifying accelerations of slope movement
    corecore