13 research outputs found

    Snow-Ice-Inspired Approach for Growth of Amorphous Silicon Nanotips

    No full text
    The growth of one-dimensional nanostructures without a metal catalyst via a simple solution method is of considerable interest due to its practical applications. In this study, the growth of amorphous silicon (a-Si) nanotips was investigated using an aqueous solution dropped onto the Si substrate, followed by drying at room temperature or below for 24 h, resulting in the formation of a-Si nanotips on the Si substrate. Typically, the a-Si nanotips were up to 1.6 μm long, with average top and middle diameters of 30 and 80 nm, respectively, and contained no metal catalyst in their structure. The growth of a-Si nanotips can be explained in terms of the liquid−solid mechanism, where the supercritical Si solution (liquid) generated on the Si substrate (after reaction with the aqueous solution) promotes the nucleation of solid Si (acting as seeds) on the roughened surface, followed by surface diffusion of Si atoms along the side wall of the Si seeds. This is very similar to the phenomenon observed in the growth of snow ice crystals in nature. When photoexcited at 265 nm, the a-Si nanotips showed blue luminescence at around 435 nm (2.85 eV), indicating feasible applicability of the nanotips in optoelectronic functional devices

    ZnO film thickness effect on surface acoustic wave modes and acoustic streaming

    No full text
    Surface acoustic wave(SAW) devices were fabricated on ZnO thin films deposited on Si substrates. Effects of ZnOfilm thickness on the wave mode and resonant frequency of the SAWs have been investigated. Rayleigh and Sezawa waves were detected, and their resonant frequencies decrease with increase in film thickness. The Sezawa wave has much higher acoustic velocity and larger signal amplitude than those of Rayleigh mode wave.Acoustic streaming for mixing has been realized in piezoelectric thin filmSAWs. The Sezawa wave has a much better efficiency in streaming, and thus is very promising for application in microfluidics

    Porous cellulose paper as a light out coupling medium for organic light-emitting diodes

    No full text
    Porous nanocellulose paper was fabricated and applied as a light outcoupling medium. The nanocellulose papers were prepared using cellulose powder and a high-pressure homogenizing process. The translucent nanocellulose paper had high total transmittance and haze, and gave off diffuse light when the incident light passes through it. Through the application of the fabricated nanocellulose paper on the external surfaces of organic light-emitting diode (OLED) devices, it was possible not only to enhance the luminous efficiency but also to widen the angular light distribution. As this paper is intrinsically flexible, it can be applied to various forms of light sources bearing curvature

    Structural Analyses on the Deamidation of N-Terminal Asn in the Human N-Degron Pathway

    No full text
    The N-degron pathway is a proteolytic system in which a single N-terminal amino acid acts as a determinant of protein degradation. Especially, degradation signaling of N-terminal asparagine (Nt-Asn) in eukaryotes is initiated from its deamidation by N-terminal asparagine amidohydrolase 1 (NTAN1) into aspartate. Here, we have elucidated structural principles of deamidation by human NTAN1. NTAN1 adopts the characteristic scaffold of CNF1/YfiH-like cysteine hydrolases that features an α-β-β sandwich structure and a catalytic triad comprising Cys, His, and Ser. In vitro deamidation assays using model peptide substrates with varying lengths and sequences showed that NTAN1 prefers hydrophobic residues at the second-position. The structures of NTAN1-peptide complexes further revealed that the recognition of Nt-Asn is sufficiently organized to produce high specificity, and the side chain of the second-position residue is accommodated in a hydrophobic pocket adjacent to the active site of NTAN1. Collectively, our structural and biochemical analyses of the substrate specificity of NTAN1 contribute to understanding the structural basis of all three amidases in the eukaryotic N-degron pathway

    Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits

    No full text
    We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals

    Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution

    No full text
    The ability to image pressure distribution over complex three-dimensional surfaces would significantly augment the potential applications of electronic skin. However, existing methods show poor spatial and temporal fidelity due to their limited pixel density, low sensitivity, or low conformability. Here, we report an ultraflexible and transparent electroluminescent skin that autonomously displays super-resolution images of pressure distribution in real time. The device comprises a transparent pressure-sensing film with a solution-processable cellulose/nanowire nanohybrid network featuring ultrahigh sensor sensitivity (>5000 kPa(-1)) and a fast response time (<1 ms), and a quantum dot-based electroluminescent film. The two ultrathin films conform to each contact object and transduce spatial pressure into conductivity distribution in a continuous domain, resulting in super-resolution (>1000 dpi) pressure imaging without the need for pixel structures. Our approach provides a new framework for visualizing accurate stimulus distribution with potential applications in skin prosthesis, robotics, and advanced human-machine interfaces. Electronic skin that spatially maps pressure distribution through imaging shows limited performance despite improvements to data acquisition. Here, the authors report ultraflexible, transparent electroluminescent skin capable of high-resolution imaging of pressure distribution over 3D surfaces.Y
    corecore