13 research outputs found
Coxsackievirus B3 infects and disrupts human induced-pluripotent stem cell derived brain-like endothelial cells
Coxsackievirus B3 (CVB3) is a significant human pathogen that is commonly found worldwide. CVB3 among other enteroviruses, are the leading causes of aseptic meningo-encephalitis which can be fatal especially in young children. How the virus gains access to the brain is poorly-understood, and the host-virus interactions that occur at the blood-brain barrier (BBB) is even less-characterized. The BBB is a highly specialized biological barrier consisting primarily of brain endothelial cells which possess unique barrier properties and facilitate the passage of nutrients into the brain while restricting access to toxins and pathogens including viruses. To determine the effects of CVB3 infection on the BBB, we utilized a model of human induced-pluripotent stem cell-derived brain-like endothelial cells (iBECs) to ascertain if CVB3 infection may alter barrier cell function and overall survival. In this study, we determined that these iBECs indeed are susceptible to CVB3 infection and release high titers of extracellular virus. We also determined that infected iBECs maintain high transendothelial electrical resistance (TEER) during early infection despite possessing high viral load. TEER progressively declines at later stages of infection. Interestingly, despite the high viral burden and TEER disruptions at later timepoints, infected iBEC monolayers remain intact, indicating a low degree of late-stage virally-mediated cell death, which may contribute to prolonged viral shedding. We had previously reported that CVB3 infections rely on the activation of transient receptor vanilloid potential 1 (TRPV1) and found that inhibiting TRPV1 activity with SB-366791 significantly limited CVB3 infection of HeLa cervical cancer cells. Similarly in this study, we observed that treating iBECs with SB-366791 significantly reduced CVB3 infection, which suggests that not only can this drug potentially limit viral entry into the brain, but also demonstrates that this infection model could be a valuable platform for testing antiviral treatments of neurotropic viruses. In all, our findings elucidate the unique effects of CVB3 infection on the BBB and shed light on potential mechanisms by which the virus can initiate infections in the brain
Die Rolle des proto-onkogenes c-Myc in der Entwicklung von Chlamydia trachomatis
Chlamydia trachomatis, an obligate intracellular human pathogen, is the world’s leading cause of infection related blindness and the most common, bacterial sexually transmitted disease. In order to establish an optimal replicative niche, the pathogen extensively interferes with the physiology of the host cell. Chlamydia switches in its complex developmental cycle between the infectious non-replicative elementary bodies (EBs) and the non-infectious replicative reticulate bodies (RBs). The transformation to RBs, shortly after entering a host cell, is a crucial process in infection to start chlamydial replication. Currently it is unknown how the transition from EBs to RBs is initiated. In this thesis, we could show that, in an axenic media approach, L glutamine uptake by the pathogen is crucial to initiate the EB to RB transition. L-glutamine is converted to amino acids which are used by the bacteria to synthesize peptidoglycan. Peptidoglycan inturn is believed to function in separating dividing Chlamydia. The glutamine metabolism is reprogrammed in infected cells in a c-Myc-dependent manner, in order to accomplish the increased requirement for L-glutamine. Upon a chlamydial infection, the proto-oncogene c-Myc gets upregulated to promote host cell glutaminolysis via glutaminase GLS1 and the L-glutamine transporter SLC1A5/ASCT2. Interference with this metabolic reprogramming leads to limited growth of C. trachomatis. Besides the active infection, Chlamydia can persist over a long period of time within the host cell whereby chronic and recurrent infections establish. C. trachomatis acquire a persistent state during an immune attack in response to elevated interferon-γ (IFN-γ) levels. It has been shown that IFN-γ activates the catabolic depletion of L-tryptophan via indoleamine 2,3-dioxygenase (IDO), resulting in the formation of non-infectious atypical chlamydial forms. In this thesis, we could show that IFN-γ depletes the key metabolic regulator c-Myc, which has been demonstrated to be a prerequisite for chlamydial development and growth, in a STAT1-dependent manner. Moreover, metabolic analyses revealed that the pathogen de routs the host cell TCA cycle to enrich pyrimidine biosynthesis. Supplementing pyrimidines or a-ketoglutarate helps the bacteria to partially overcome the persistent state. Together, the results indicate a central role of c-Myc induced host glutamine metabolism reprogramming and L-glutamine for the development of C. trachomatis, which may provide a basis for anti-infectious strategies. Furthermore, they challenge the longstanding hypothesis of L-tryptophan shortage as the sole reason for IFN-γ induced persistence and suggest a pivotal role of c-Myc in the control of the C. trachomatis dormancy.Chlamydia trachomatis, ein obligat intrazellul¨ares humanes Pathogen, ist weltweit fu¨hrende Ursache fu¨r infektionsbedingte Erblindung und die h¨aufigste, bakterielle sexuell u¨bertragbare Krankheit. Um eine optimale Replikationsnische zu etablieren, interagiert das Pathogen in tensiv mit der Physiologie der Wirtszelle. Chlamydien wechseln in ihrem komplexen Entwick lungszyklus zwischen den infekti¨osen nicht replizierenden Elementark¨orperchen (EBs) und den nicht infekti¨osen replizierenden Retikulark¨orperchen (RBs), und diese Umwandlung in RBs kurz nach dem Eintritt in die Wirtszelle ist ein entscheidender Prozess in der Infektion, um die Replikation des Bakteriums einzuleiten. Derzeit ist noch nicht bekannt, wodurch diese Transformation von EBs zu RBs eingeleitet wird. In dieser Arbeit konnte gezeigt werden, dass bei einer zellfreien Kultivierung des Pathogens die Aufnahme von Glutamin durch den Erreger entscheidend ist, um den ¨Ubergang von EB zu RB zu initiieren. Vor kurzem wurde Peptidoglykan in den Septen von sich replizierenden Chlamydien nachgewiesen. Fu¨r die Syn these des Peptidoglykans nutzen die Bakterien das aufgenommene Glutamin. Der Glutamin metabolismus wird in infizierten Zellen c-Myc abh¨angig umprogrammiert, um den erh¨ohten Bedarf an Glutamin zu bew¨altigen. Bei einer Chlamydieninfektion wird das Proto-Onkogen c-Myc zur F¨orderung der Glutaminolyse der Wirtszelle u¨ber die Glutaminase GLS1 und den Glutamin Transporter SLC1A5/ASCT2 hochreguliert. Ein Eingreifen in diese metabolische Neuprogrammierung fu¨hrt zu einem reduzierten Wachstum von C. trachomatis. Neben der aktiven Infektion k¨onnen Chlamydien u¨ber einen sehr langen Zeitraum in der Wirtszelle persistieren, wodurch es zur Etablierung von chronischen und wiederkehrenden Infektionen kommt. C. trachomatis verf¨allt bei einem Immunangriff in Persistenz, wenn sie auf das freigesetzte Interferon-γ treffen. Es ist bekannt, dass Interferon-γ den Katabolismus von Tryptophan mittels indoleamine 2,3-dioxygenase (IDO) aktiviert, was zur Bildung von nicht infekti¨osen atypischen Chlamydienformen fu¨hrt. In dieser Arbeit konnte gezeigt werden, dass Interferon-γ den zentralen Stoffwechselregulator c-Myc, der sich fu¨r die Entwicklung und das Wachstum von Chlamydien als essentiell erwiesen hat, in Abh¨angigkeit von STAT1 herunter reguliert. Daru¨ber hinaus zeigte die Analyse des Metabolismus, dass das Pathogen den TCA Zyklus der Wirtszelle umleitet, um die Pyrimidinbiosynthese zu unterstu¨tzen. Die Zugabe von Pyrimidinen oder α-Ketoglutarat hilft den Bakterien den Status der Persistenz teilweise zu u¨berwinden. Zusammengenommen deuten die Ergebnisse auf eine zentrale Rolle der c-Myc induzierten Umprogrammierung des Glutaminmetabolismus und des Glutamins selbst fu¨r die Entwicklung von C. trachomatis hin. Diese Befunde k¨onnten eine Basis fu¨r Strategien gegen eine Infektion darstellen. Weiterhin stellen sie die seit langem bestehende Hypothese des Trypotphanmangels als alleiniger Grund fu¨r die von Interferon-γ induzierte Persistenz in Frage und legen eine zentrale Rolle von c-Myc bei der Kontrolle der C. trachomatis Dormanz nahe
Host-microbe interactions at the blood-brain barrier through the lens of induced pluripotent stem cell-derived brain-like endothelial cells
ABSTRACTMicrobe-induced meningoencephalitis/meningitis is a life-threatening infection of the central nervous system (CNS) that occurs when pathogens are able to cross the blood-brain barrier (BBB) and gain access to the CNS. The BBB consists of highly specialized brain endothelial cells that exhibit specific properties to allow tight regulation of CNS homeostasis and prevent pathogen crossing. However, during meningoencephalitis/meningitis, the BBB fails to protect the CNS. Modeling the BBB remains a challenge due to the specialized characteristics of these cells. In this review, we cover the induced pluripotent stem cell-derived, brain-like endothelial cell model during host-pathogen interaction, highlighting the strengths and recent work on various pathogens known to interact with the BBB. As stem cell technologies are becoming more prominent, the stem cell-derived, brain-like endothelial cell model has been able to reveal new insights in vitro, which remain challenging with other in vitro cell-based models consisting of primary human brain endothelial cells and immortalized human brain endothelial cell lines
Synthesis and Characterization of Quercetin–Iron Complex Nanoparticles for Overcoming Drug Resistance
Quercetin, one of the major natural flavonoids, has demonstrated great pharmacological potential as an antioxidant and in overcoming drug resistance. However, its low aqueous solubility and poor stability limit its potential applications. Previous studies suggest that the formation of quercetin-metal complexes could increase quercetin stability and biological activity. In this paper, we systematically investigated the formation of quercetin-iron complex nanoparticles by varying the ligand-to-metal ratios with the goal of increasing the aqueous solubility and stability of quercetin. It was found that quercetin-iron complex nanoparticles could be reproducibly synthesized with several ligand-to-iron ratios at room temperature. The UV-Vis spectra of the nanoparticles indicated that nanoparticle formation greatly increased the stability and solubility of quercetin. Compared to free quercetin, the quercetin-iron complex nanoparticles exhibited enhanced antioxidant activities and elongated effects. Our preliminary cellular evaluation suggests that these nanoparticles had minimal cytotoxicity and could effectively block the efflux pump of cells, indicating their potential for cancer treatment
c-Myc plays a key role in IFN-γ-induced persistence of Chlamydia trachomatis
Chlamydia trachomatis (Ctr) can persist over extended times within their host cell and thereby establish chronic infections. One of the major inducers of chlamydial persistence is interferon-gamma (IFN-γ) released by immune cells as a mechanism of immune defence. IFN-γ activates the catabolic depletion of L-tryptophan (Trp) via indoleamine-2,3-dioxygenase (IDO), resulting in persistent Ctr. Here, we show that IFN-γ induces the downregulation of c-Myc, the key regulator of host cell metabolism, in a STAT1-dependent manner. Expression of c-Myc rescued Ctr from IFN-γ-induced persistence in cell lines and human fallopian tube organoids. Trp concentrations control c-Myc levels most likely via the PI3K-GSK3β axis. Unbiased metabolic analysis revealed that Ctr infection reprograms the host cell tricarboxylic acid (TCA) cycle to support pyrimidine biosynthesis. Addition of TCA cycle intermediates or pyrimidine/purine nucleosides to infected cells rescued Ctr from IFN-γ-induced persistence. Thus, our results challenge the longstanding hypothesis of Trp depletion through IDO as the major mechanism of IFN-γ-induced metabolic immune defence and significantly extends the understanding of the role of IFN-γ as a broad modulator of host cell metabolism
Image_3_Coxsackievirus B3 infects and disrupts human induced-pluripotent stem cell derived brain-like endothelial cells.tiff
Coxsackievirus B3 (CVB3) is a significant human pathogen that is commonly found worldwide. CVB3 among other enteroviruses, are the leading causes of aseptic meningo-encephalitis which can be fatal especially in young children. How the virus gains access to the brain is poorly-understood, and the host-virus interactions that occur at the blood-brain barrier (BBB) is even less-characterized. The BBB is a highly specialized biological barrier consisting primarily of brain endothelial cells which possess unique barrier properties and facilitate the passage of nutrients into the brain while restricting access to toxins and pathogens including viruses. To determine the effects of CVB3 infection on the BBB, we utilized a model of human induced-pluripotent stem cell-derived brain-like endothelial cells (iBECs) to ascertain if CVB3 infection may alter barrier cell function and overall survival. In this study, we determined that these iBECs indeed are susceptible to CVB3 infection and release high titers of extracellular virus. We also determined that infected iBECs maintain high transendothelial electrical resistance (TEER) during early infection despite possessing high viral load. TEER progressively declines at later stages of infection. Interestingly, despite the high viral burden and TEER disruptions at later timepoints, infected iBEC monolayers remain intact, indicating a low degree of late-stage virally-mediated cell death, which may contribute to prolonged viral shedding. We had previously reported that CVB3 infections rely on the activation of transient receptor vanilloid potential 1 (TRPV1) and found that inhibiting TRPV1 activity with SB-366791 significantly limited CVB3 infection of HeLa cervical cancer cells. Similarly in this study, we observed that treating iBECs with SB-366791 significantly reduced CVB3 infection, which suggests that not only can this drug potentially limit viral entry into the brain, but also demonstrates that this infection model could be a valuable platform for testing antiviral treatments of neurotropic viruses. In all, our findings elucidate the unique effects of CVB3 infection on the BBB and shed light on potential mechanisms by which the virus can initiate infections in the brain.</p
Image_2_Coxsackievirus B3 infects and disrupts human induced-pluripotent stem cell derived brain-like endothelial cells.tiff
Coxsackievirus B3 (CVB3) is a significant human pathogen that is commonly found worldwide. CVB3 among other enteroviruses, are the leading causes of aseptic meningo-encephalitis which can be fatal especially in young children. How the virus gains access to the brain is poorly-understood, and the host-virus interactions that occur at the blood-brain barrier (BBB) is even less-characterized. The BBB is a highly specialized biological barrier consisting primarily of brain endothelial cells which possess unique barrier properties and facilitate the passage of nutrients into the brain while restricting access to toxins and pathogens including viruses. To determine the effects of CVB3 infection on the BBB, we utilized a model of human induced-pluripotent stem cell-derived brain-like endothelial cells (iBECs) to ascertain if CVB3 infection may alter barrier cell function and overall survival. In this study, we determined that these iBECs indeed are susceptible to CVB3 infection and release high titers of extracellular virus. We also determined that infected iBECs maintain high transendothelial electrical resistance (TEER) during early infection despite possessing high viral load. TEER progressively declines at later stages of infection. Interestingly, despite the high viral burden and TEER disruptions at later timepoints, infected iBEC monolayers remain intact, indicating a low degree of late-stage virally-mediated cell death, which may contribute to prolonged viral shedding. We had previously reported that CVB3 infections rely on the activation of transient receptor vanilloid potential 1 (TRPV1) and found that inhibiting TRPV1 activity with SB-366791 significantly limited CVB3 infection of HeLa cervical cancer cells. Similarly in this study, we observed that treating iBECs with SB-366791 significantly reduced CVB3 infection, which suggests that not only can this drug potentially limit viral entry into the brain, but also demonstrates that this infection model could be a valuable platform for testing antiviral treatments of neurotropic viruses. In all, our findings elucidate the unique effects of CVB3 infection on the BBB and shed light on potential mechanisms by which the virus can initiate infections in the brain.</p
Image_5_Coxsackievirus B3 infects and disrupts human induced-pluripotent stem cell derived brain-like endothelial cells.tiff
Coxsackievirus B3 (CVB3) is a significant human pathogen that is commonly found worldwide. CVB3 among other enteroviruses, are the leading causes of aseptic meningo-encephalitis which can be fatal especially in young children. How the virus gains access to the brain is poorly-understood, and the host-virus interactions that occur at the blood-brain barrier (BBB) is even less-characterized. The BBB is a highly specialized biological barrier consisting primarily of brain endothelial cells which possess unique barrier properties and facilitate the passage of nutrients into the brain while restricting access to toxins and pathogens including viruses. To determine the effects of CVB3 infection on the BBB, we utilized a model of human induced-pluripotent stem cell-derived brain-like endothelial cells (iBECs) to ascertain if CVB3 infection may alter barrier cell function and overall survival. In this study, we determined that these iBECs indeed are susceptible to CVB3 infection and release high titers of extracellular virus. We also determined that infected iBECs maintain high transendothelial electrical resistance (TEER) during early infection despite possessing high viral load. TEER progressively declines at later stages of infection. Interestingly, despite the high viral burden and TEER disruptions at later timepoints, infected iBEC monolayers remain intact, indicating a low degree of late-stage virally-mediated cell death, which may contribute to prolonged viral shedding. We had previously reported that CVB3 infections rely on the activation of transient receptor vanilloid potential 1 (TRPV1) and found that inhibiting TRPV1 activity with SB-366791 significantly limited CVB3 infection of HeLa cervical cancer cells. Similarly in this study, we observed that treating iBECs with SB-366791 significantly reduced CVB3 infection, which suggests that not only can this drug potentially limit viral entry into the brain, but also demonstrates that this infection model could be a valuable platform for testing antiviral treatments of neurotropic viruses. In all, our findings elucidate the unique effects of CVB3 infection on the BBB and shed light on potential mechanisms by which the virus can initiate infections in the brain.</p
Image_6_Coxsackievirus B3 infects and disrupts human induced-pluripotent stem cell derived brain-like endothelial cells.tiff
Coxsackievirus B3 (CVB3) is a significant human pathogen that is commonly found worldwide. CVB3 among other enteroviruses, are the leading causes of aseptic meningo-encephalitis which can be fatal especially in young children. How the virus gains access to the brain is poorly-understood, and the host-virus interactions that occur at the blood-brain barrier (BBB) is even less-characterized. The BBB is a highly specialized biological barrier consisting primarily of brain endothelial cells which possess unique barrier properties and facilitate the passage of nutrients into the brain while restricting access to toxins and pathogens including viruses. To determine the effects of CVB3 infection on the BBB, we utilized a model of human induced-pluripotent stem cell-derived brain-like endothelial cells (iBECs) to ascertain if CVB3 infection may alter barrier cell function and overall survival. In this study, we determined that these iBECs indeed are susceptible to CVB3 infection and release high titers of extracellular virus. We also determined that infected iBECs maintain high transendothelial electrical resistance (TEER) during early infection despite possessing high viral load. TEER progressively declines at later stages of infection. Interestingly, despite the high viral burden and TEER disruptions at later timepoints, infected iBEC monolayers remain intact, indicating a low degree of late-stage virally-mediated cell death, which may contribute to prolonged viral shedding. We had previously reported that CVB3 infections rely on the activation of transient receptor vanilloid potential 1 (TRPV1) and found that inhibiting TRPV1 activity with SB-366791 significantly limited CVB3 infection of HeLa cervical cancer cells. Similarly in this study, we observed that treating iBECs with SB-366791 significantly reduced CVB3 infection, which suggests that not only can this drug potentially limit viral entry into the brain, but also demonstrates that this infection model could be a valuable platform for testing antiviral treatments of neurotropic viruses. In all, our findings elucidate the unique effects of CVB3 infection on the BBB and shed light on potential mechanisms by which the virus can initiate infections in the brain.</p