20 research outputs found

    Processes underlying rabies virus incursions across US–Canada Border as revealed by whole-genome phylogeography

    Get PDF
    Disease control programs aim to constrain and reduce the spread of infection. Human disease interventions such as wildlife vaccination play a major role in determining the limits of a pathogen’s spatial distribution. Over the past few decades, a raccoon-specific variant of rabies virus (RRV) has invaded large areas of eastern North America. Although expansion into Canada has been largely prevented through vaccination along the US border, several outbreaks have occurred in Canada. Applying phylogeographic approaches to 289 RRV whole-genome sequences derived from isolates collected in Canada and adjacent US states, we examined the processes underlying these outbreaks. RRV incursions were attributable predominantly to systematic virus leakage of local strains across areas along the border where vaccination has been conducted but also to single stochastic events such as long-distance translocations. These results demonstrate the utility of phylogeographic analysis of pathogen genomes for understanding transboundary outbreaks

    Application of high-throughput sequencing to whole rabies viral genome characterisation and its use for phylogenetic re-evaluation of a raccoon strain incursion into the province of Ontario

    Get PDF
    Raccoon rabies remains a serious public health problem throughout much of the eastern seaboard of North America due to the urban nature of the reservoir host and the many challenges inherent in multi-jurisdictional efforts to administer co-ordinated and comprehensive wildlife rabies control programmes. Better understanding of the mechanisms of spread of rabies virus can play a significant role in guiding such control efforts. To facilitate a detailed molecular epidemiological study of raccoon rabies virus movements across eastern North America, we developed a methodology to efficiently determine whole genome sequences of hundreds of viral samples. The workflow combines the generation of a limited number of overlapping amplicons covering the complete viral genome and use of high throughput sequencing technology. The value of this approach is demonstrated through a retrospective phylogenetic analysis of an outbreak of raccoon rabies which occurred in the province of Ontario between 1999 and 2005. As demonstrated by the number of single nucleotide polymorphisms detected, whole genome sequence data were far more effective than single gene sequences in discriminating between samples and this facilitated the generation of more robust and informative phylogenies that yielded insights into the spatio-temporal pattern of viral spread. With minor modification this approach could be applied to other rabies virus variants thereby facilitating greatly improved phylogenetic inference and thus better understanding of the spread of this serious zoonotic disease. Such information will inform the most appropriate strategies for rabies control in wildlife reservoirs

    Emergence of Arctic-like Rabies Lineage in India

    Get PDF
    Progenitors of Arctic-like rabies viruses, which now circulate extensively in India, may have been responsible for the emergence of the Arctic rabies lineage

    Genetic Tracking of the Raccoon Variant of Rabies Virus in Eastern North America

    Get PDF
    AbstractTo gain insight into the incursion of the raccoon variant of rabies into the raccoon population in three Canadian provinces, a collection of 192 isolates of the raccoon rabies virus (RRV) strain was acquired from across its North American range and was genetically characterized. A 516-nucleotide segment of the non-coding region between the G and L protein open reading frames, corresponding to the most variable region of the rabies virus genome, was sequenced. This analysis identified 119 different sequences, and phylogenetic analysis of the dataset supports the documented history of RRV spread. Three distinct geographically restricted RRV lineages were identified. Lineage 1 was found in Florida, Alabama and Georgia and appears to form the ancestral lineage of the raccoon variant of rabies. Lineage 2, represented by just two isolates, was found only in Florida, while the third lineage appears broadly distributed throughout the rest of the eastern United States and eastern Canada. In New York State, two distinct spatially segregated variants were identified; the one occupying the western and northern portions of the state was responsible for an incursion of raccoon rabies into the Canadian province of Ontario. Isolates from New Brunswick and Quebec form distinct, separate clusters, consistent with their independent origins from neighboring areas of the United States. The data are consistent with localized northward incursion into these three separate areas with no evidence of east–west viral movement between the three Canadian provinces

    Rabies-Specific Antibodies: Measuring Surrogates of Protection against a Fatal Disease

    Get PDF
    Antibodies play a central role in prophylaxis against many infectious agents. While neutralization is a primary function of antibodies, the Fc- and complement-dependent activities of these multifunctional proteins may also be critical in their ability to provide protection against most viruses. Protection against viral pathogens in vivo is complex, and while virus neutralization—the ability of antibody to inactivate virus infectivity, often measured in vitro—is important, it is often only a partial contributor in protection. The rapid fluorescent focus inhibition test (RFFIT) remains the “gold standard” assay to measure rabies virus–neutralizing antibodies. In addition to neutralization, the rabies-specific antigen-binding activity of antibodies may be measured through enzyme-linked immunosorbent assays (ELISAs), as well as other available methods. For any disease, in selecting the appropriate assay(s) to use to assess antibody titers, assay validation and how they are interpreted are important considerations—but for a fatal disease like rabies, they are of paramount importance. The innate limitations of a one-dimensional laboratory test for rabies antibody measurement, as well as the validation of the method of choice, must be carefully considered in the selection of an assay method and for the interpretation of results that might be construed as a surrogate of protection

    The polyadenylation of rat mRNA during mammary gland development.

    No full text

    Genetic characterization and phylogenetic analysis of skunk-associated rabies viruses in North America with special emphasis on the central plains

    Get PDF
    Across North America the skunk acts as a reservoir for several rabies virus variants. Some of these variants are geographically restricted in range as is the case for the California skunk variant and two distinct variants present in Mexico. In contrast the North Central and South Central skunk rabies viruses are dispersed in overlapping ranges over large areas of the Midwestern region of the United States with the former extending into southern parts of the Canadian prairies. Despite this extensive range, there has been only very limited molecular characterization of these two viral variants. This study has examined the genetic diversity of the rabies viruses associated with North American skunks, with particular emphasis on the South Central skunk variant which was found to comprise three distinct geographically restricted groups of viruses that could in some cases be further sub-divided. The phylogenetic relationships of these groups and sub-groups allowed us to infer the likely direction of spread of these variants in some instances. Patterns of amino acid replacement of North American skunk-associated rabies viruses for both the nucleoprotein and glycoprotein products are also examined. These patterns reflect the virus phylogeny but no amino acid residues associated specifically with the skunk host were identified

    Origins of the arctic fox variant rabies viruses responsible for recent cases of the disease in southern Ontario.

    No full text
    A subpopulation of the arctic fox lineage of rabies virus has circulated extensively in red fox populations of Ontario, Canada, between the 1960s and 1990s. An intensive wildlife rabies control program, in which field operations were initiated in 1989, resulted in elimination of the disease in eastern Ontario. However in southwestern Ontario, as numbers of rabid foxes declined the proportion of skunks confirmed to be infected with this rabies virus variant increased and concerted control efforts targeting this species were employed to eliminate the disease. Since 2012 no cases due to this viral variant were reported in southwestern Ontario until 2015 when a single case of rabies due to the arctic fox variant was reported in a bovine. Several additional cases have been documented subsequently. Since routine antigenic typing cannot discriminate between the variants which previously circulated in Ontario and those from northern Canada it was unknown whether these recent cases were the result of a new introduction of this variant or a continuation of the previous enzootic. To explore the origins of this new outbreak whole genome sequences of a collection of 128 rabies viruses recovered from Ontario between the 1990s to the present were compared with those representative of variants circulating in the Canadian north. Phylogenetic analysis shows that the variant responsible for current cases in southwestern Ontario has evolved from those variants known to circulate in Ontario previously and is not due to a new introduction from northern regions. Thus despite ongoing passive surveillance the persistence of wildlife rabies went undetected in the study area for almost three years. The apparent adaptation of this rabies virus variant to the skunk host provided the opportunity to explore coding changes in the viral genome which might be associated with this host shift. Several such changes were identified including a subset for which the operation of positive selection was supported. The location of a small number of these amino acid substitutions in or close to protein motifs of functional importance suggests that some of them may have played a role in this host shift
    corecore